故障指示器的取电问题一直是关注的焦点。对于安装于架空分支线的故障指示器,由于在谷期负荷较轻,采用电流互感器取电方式难以维持装置正常工作所需功率;若采用太阳能取能方式,在夜间或遇到阴雨天时,也难以维持装置正常工作所需功率。因此,故障指示器一般都内置有储能电池,在正常取能不能维持装置正常工作时提供能量。而储能电池的寿命有限,在其失效前必须加以更换,这也是许多人诟病故障指示器之处。
对于故障指示器也不必刻意追求完美,如果只要求故障指示器在相间短路故障时能够正确可靠地反映故障现象,就不需要内置储能电池而可以做到免维护,因为无论故障指示器安装位置流过的负荷电流怎样,在其下游发生相间短路时,故障指示器的电流互感器能够从强大的短路电流中提取足够大的能量,并将之存储于超级电容中,该能量足以维持故障指示器工作一小段时间(如1min),使之正确完成故障信息检测并经GPRS通道将故障信息传送到配电自动化主站。但是,这样设计的故障指示器在配电网正常运行时可能会遇到停止工作(如遇到负荷谷期时),而且对于中性点非有效接地系统当发生单相接地时可能也会没有反应。但是,这种故障指示器毕竟在相间短路故障时能够可靠发挥其作用,而且能做到免维护,试想那些利用故障时的电动力“翻转指示”的传统就地型故障指示器也仅在相间短路时能够起作用而已。
许多人对于故障指示器仅仅能够在相间短路故障时发挥作用不满意,还希望其能有助于单相接地位置查找,甚至还希望在配电网正常运行时,通过故障指示器粗略观测电流以大致了解配电网的运行情况。为了实现上述功能,在现有技术水平下,就必须接受“故障指示器需要内置储能电池并及时进行更换”的现实,这也是“不必追求完美”理念的另一种表现。
作者认为,由于故障指示器能够方便地带电安装和拆卸,更换其内置的储能电池并非不能接受,而且还有必要采用轮换替代法定期对故障指示器进行巡检和维护,具体做法是:定期用很少量通过实验室测试的完好的故障指示器去替换现场同样数量的故障指示器,并对更换下来的故障指示器进行实验室测试(即抽样测试),若全部完好则下次再用这批故障指示器去进行现场替换;若发现存在少许有缺陷的故障指示器,则适当增加轮换替代的故障指示器数量并缩短进行轮换替代的周期(即适当加大抽样力度)。对储能电池性能的检测和更换可以在上述例行维护中同时进行。
通过对故障指示器的定期轮换替代和测试维护,可以及时发现缺陷并进行修复,从而更加可靠地发挥出故障指示器的作用。
与采用“三遥”配电自动化终端相比,故障指示器只能上报故障信息并由配电自动化主站进行故障定位并派出人员去现场操作,而不能通过遥控隔离故障区域和恢复健全区域供电。但是,相比不采用任何措施,已经大大节省了故障查线时间,并且工作人员到现场后,可以人工操作隔离开关将故障隔离在远比具有“三遥”的自动化开关所能隔离的范围小得多的区域之内,在大多数情形下,在故障定位指引下的人工操作大致可以在30~45min之内完成。因此,故障指示器方案能够显著减少停电户时数,“不完美”未必不能满足需要。
当然,对于供电可用率要求较高的区域,还必须适当安装“三遥”配电自动化终端才能满足要求,而对于供电可用率要求特别高的区域,还必须采用多供电途径备自投等措施。