北极星智能电网在线讯:在化石资源日渐减少、环境问题日益严重的今天,能源问题成为现阶段制约人类社会可持续发展的关键因素。实现可替代传统化石能源的可再生能源(如风能、太阳能等)的有效利用,是解决能源危机的重要手段。而大规模储能技术的引入将有效提高可再生能源发电的入网效率。同时,混合动力车和电动汽车的逐步市场化以及各种便携式用电装置的快速发展,均需要高效实用的电能存储系统。
优异的储能材料是储能系统的核心部分,而具有特殊结构的碳材料一直是储能材料大家族的重要成员,特别是2004年发现的石墨烯,它是一种由碳原子构成的单层片状结构的新材料,具有许多特殊的性质。石墨烯强度达130GPa,比钢高100倍,是目前强度最高的材料;热导率可达500W/(m˙K),是金刚石的3倍;载流子迁移率高达15000cm2/(V˙S),是商用硅片的10倍以上;石墨烯具有超大的比表面积(2630m2/g)、室温量子霍尔效应和良好的铁磁性,是目前已知的在常温下导电性能最好的材料,电子在其中的运动速度远超过一般导体,达到了光速的1/300。石墨烯一经发现即毫无疑问地成为目前材料科学界的研究热点。它的出现彻底颠覆了70年前由Landau和Peierls提出的绝对二维晶体是热力学不稳定的且不可能存在的传统理论。
石墨烯是由碳原子以sp2杂化连接的单原子层构成的新型二维原子晶体,其基本结构单元为有机材料中最稳定的六元环,理论厚度仅为0.34nm,是迄今为止发现的最薄的二维材料,由于石墨烯结构的片段可以卷曲得到富勒烯、碳纳米管或者堆叠形成石墨,因此被认为是构建石墨、富勒烯、碳纳米管和石墨等碳材料的基本结构单元(图1)。
目前,石墨烯制备的主要方法有机械剥离法、晶体外延生长法、化学气相沉积法、氧化还原法、碳纳米管剖开法、电化学剥离法。机械剥离法和化学气相沉积法可以获得有良好微观形貌的单层石墨烯,但制备方法复杂且仅能获得少量石墨烯,不适合石墨烯的大规模生产和应用。晶体外延生长法能够根据不同的条件制备得到单层或多层的石墨烯,但缺点在于对反应温度要求比较严格,并且较难将石墨烯片层转移到其它基体。氧化还原法成本低、产率高、利于工业化生产,但以有毒的肼作还原剂对环境有害。电化学剥离法可以快速、低成本制备石墨烯,但得到的产物绝大多数为多层结构,不易得到单层石墨烯。研究人员也在不断地对各种方法进行改进,或探索新的方法以期制备出质量更好且适合工业生产的石墨烯。