石墨烯以其独特的二维结构可与其它材料组成三维导电网络。Fan等利用CVD法将石墨烯和碳纳米管成功合成了Dimitmkakis等所模拟的三维结构并用于超级电容器中。虽然存在石墨层与催化剂表面的润湿性较差导致碳纳米管在石墨上生长的一致性较差的问题,但在扫速10mV/s下最大比容量仍能达到385F/g。这种结构不但能在氧化还原过程中提供巨大的缓冲空间,同时能增加石墨烯表面的扩散路径,形成电子传输的三维网络。
石墨烯本身有很强的团聚趋势,会影响电容器的能量储存和循环寿命。Dong等制备出分层结构的石墨烯材料用于改善超级电容器的性能,其比容量接近单层石墨烯理论值。将其与聚苯胺纳米棒复合后复合电极比容量高达763F/g。
目前,大多数观点认为化学法还原氧化石墨烯都需要在高温环境下进行,但Lü等成功地在真空环境中、远比理论临界剥离温度低的温度(200℃)下制得石墨烯,原理如图4所示。这种方法得到的石墨烯比高温法制得的石墨烯比容量更高,达到了279F/g。
石墨烯是制作高效、高能、柔韧和微型超级电容器很有潜力的材料。实现石墨烯高的有效比表面积和优良导电性能是实现其在超级电容器中应用的前提。目前,石墨烯和金属氧化物、导电聚合物复合材料的研究进展迅速,但仍限于实验室研究,还没有理想的大规模制备高质量石墨烯及其复合材料的方法,也较少考虑石墨烯基超级电容器的体积比性能,对其元件性能的研究和报道尚未形成统一的标准。