耐久性,即系统寿命。传统能源和新能源发电厂的生命周期都在20年以上,与之匹配的储能系统也需要有相同的长寿命。一般需要电网储能系统寿命超过10年,并且可以承受超过4000次深度充放电的考验。
经济性。不仅要关注电池的成本,还有变电系统、辅助系统等系统性成本;不仅是电池系统成本,还有安装和工程造价(在电池成本上增加30~100%很正常);不仅是资金成本,还有运营维护成本——因此要比较不同循环寿命周期下的度电成本。同时不仅要看成本,还要看效益,有些贵的电池寿命更长,性价比更高。
可靠性。电池系统不需要太多的维护和保养。
3.美国目前电网储能以抽水蓄能为主,未来主要方向为电池等灵活储能系统。美国发电装机总量在1200GW左右,有大概2%,即20~30GW的储能能力。美国目前电网储能的95%为抽水蓄能,总量超过20GW,基本上都是在1980年以前建造的。抽水蓄能系统成本最低,但由于环境影响大、建造周期长、投资巨大、地理选址受限等原因,未来的发展非常有限。美国未来电网储能的主要发展方向是使用更加柔性化、多功能、灵活的储能系统。电池储能技术由于高效、功能多样、充放电双向反应、响应速度快、清洁而成为了首选。
4.各种电池储能技术的对比显示,液流电池优势突出。
锂离子电池。锂离子电池的概念是在1970年代提出的。经过近二十年的材料研发和完善,1991年第一块商业化锂离子电池出现,再经过多年大量的资本投入与发展,锂离子电池的技术已经走向成熟。锂电池最大的优点在于能量密度和效率都很高,所以很快得到了广泛应用。到今天,全球围绕锂电池建成了比较成熟的工业系统。锂电池的缺点在于:1)安全性低,事故多发,如波音787的锂电池事故,锂聚合物电池在亚利桑那州的大型起火事故等。电解液的可燃性使危险永远存在;2)容量随着充电循环次数增加而减少,需要经常换电池;3)基本上放电时间较短,长时间放电对锂电池的挑战很大。
钠电池。钠电池根据正极情况,一种是钠硫电池,一种是钠-金属氯化物电池。这两种电池的运行温度都需在300~350摄氏度。能量密度与锂电池相当。如果可以长期连续使用,能取得很好的电池效率。电池寿命(充放电20~80%)可以达到4000~5000次。目前这种电池技术已经比较成熟,东京电力、NGK、GE等大公司做了很大的投资。但是安全性还不能完全保证,2011年日本的2MW钠硫电池系统发生大火,对技术推广产生了很大影响。