举一个例子:大型发电机组跳闸,接着一条500KV重要线路跳开。
暂态分析看出:事故后20s内,频率和电压经过摇摆后稳定;电压有所下降。系统显现了比较乐观的响应。
动态分析来看,是一个长期的时间框架,考虑负荷,发电机,ULTC,励磁保护,AGC,气机等。模拟下比较坏的情况:
调速器动作,增加发电功率(有差调节)―――AGC作用,全网功率再调度―――加重了电网的压力(原因:按经济调度的原则,而不是按最合适的地点。这样,有些线路可能压力加大);
电压下降导致负荷功率下降(考虑负荷电压静特性)―――功率过剩―――频率升高―――AGC作用,降低发电功率.
80s后,一些达到无功极限的发电机的OEL动作,使Qlimit致Qnominal―――进一步电压水平下降。其它发电机增加无功输出。
120s后,负荷动态和ULTC二者动态结合导致系统电压下降―――被AGC进一步被加剧(AGC减少发电功率以降低频率,而降低发电功率的发电机正好位于负荷中心―-相当于负荷过重,需要无功支持加大―――电压下降;)
160s后,另外一些发电机由于OEL作用而使Qlimit致Qnominal,减少无功输出,加大了和加速了电压下降―――发电机失步,低压保护而失去一些发电机。
电压崩溃,频率失稳。
功角不稳定和电压不稳定经常同时发生,一种形式的不稳定可导致另一种形式的不稳定。提高电压稳定性的控制措施主要有发电机无功控制(励磁控制)、低电压切负荷、静止补偿设备(SVC、STATCOM)等,低电压切负荷措施是电压紧急控制最基本而有效的措施。对于复杂电网,仅靠分散安装的低压切负荷装置往往不能有效解决电压稳定问题,需要配置多个厂站的电压稳定控制系统,根据多个相关站点的电压水平及系统的运行状态(包括故障)来进行决策。