在大数据时代,想要对整个城市的运行进行管理,不仅要考虑交通问题,还要考虑气象的影响、交通污染的排放以及整个城市市政道路、管网的建设。
“所以,深圳一直在构建一体化的模型体系。”关志超表示,面对大数据,如何在城市宏观层面实现城市、区域、宏观大模型体系的标定和迁移,确实是当前所要考虑的重点工作。
关志超告诉记者,人口分布、用地情况以及出行速度分布等一系列模型体系的建立,为城市管理和政府决策提供了数据支撑。他们将罗湖区细分为2864个交通小区,从宏观、中观、微观三个层次建立了系列模型,作为支撑整个城市交通服务和交通问题的分析研究。
深圳市曾提出构建未来交通实验室的畅想,在这样的大推进模式下,由中国综合交通指挥中心作为未来开放实验室的数据基础环境,联合多家科研机构推进交通未来实验室的开发,实现交通资源面向城市、面向社会一体化的公益性服务。
此外,深圳市具有全国最大规模的仿真环境。交通仿真的建立为整个城市轨道交通模型体系的不断优化,为城市交通指数的监测和服务提供了有效的技术支撑和保障。
技术创新倒逼管理变革
大数据仿佛一夜之间风靡全球,既宣告了一个时代的到来,又显然成了一个时代的标志。
但“大数据不是定制数据,往往是间接证据”。杨东援表示,间接证据在某些区间里的判断是成立的,在某些区间里的又肯定不对,无法直接成为决策依据。
“再者,就是对数据进行清洗和正确的判断,因为大量的数据经常是错的。”杨东援举了个例子:研发机构号称牌照读出率为95%~98%,但数据交合后发现,实际上不到6万辆的上海出租车,被读出的车辆数却呈数量级翻倍——原来是“Z”和“2”傻傻分不清。然而,“交通大数据应用的最大困难还不是技术,而是管理者的变革决心。”杨东援坦言,大数据的价值在于让我们更好地“搭脉”,“帮助我们发现不知道的,而不是验证已经知道的”。
从城市交通角度来讲,政府如何利用大数据对整个城市交通进行管控,这是一个亟待解决的问题。
“在非高峰时期,人们为何也不选择公交出行?一个重要原因就是没有时刻表。”杨东援坦言,老百姓所谓的公交出行时间,实际上是将无效预留时间也算在内。除了让公交跑得快以外,能否减少无效预留时间等问题也有待解决。
据科研人员分析,智能交通的潜在价值还没有得到有效挖掘,对交通信息的感知和收集有限,对存在于各个管理系统中的海量的数据无法共享运用、有效分析,对交通态势的研判预测乏力,对公众的交通信息服务很难满足需求。这会造成智能交通的效率不高,智能化程度不够,使得很多先进技术设备发挥不了应有的作用,也造成了大量投入上的资金浪费。
由此可见,交通大数据只是一系列图和表,交通工程师也只是参谋,政府才是决策者。大数据与管理如果不能携手同行,智能也只能在云端打转。