1 石墨烯基双电层电容器
石墨烯具有优异的导电性、柔韧性、力学性能和很大的比表面积,自身可作为双电层超级电容器的电极材料。但无论是石墨烯、氧化石墨烯(GO)还是还原氧化石 墨烯(RGO),它们在制备过程中均容易发生堆叠,影响石墨烯材料在电解质中的分散性和表面可浸润性,降低了石墨烯材料的有效比表面积和电导率。因此,避 免石墨烯堆叠是制备高能量密度和高功率密度石墨烯基超级电容器的技术难题之一。Zhang 等将各种表面活性剂,如四丁基氢氧化铵、十六烷基三甲基溴化铵、十二烷基苯磺酸钠等嵌入到氧化石墨烯片中,缓解氧化石墨烯在还原过程中的堆叠现象,使表面 活性剂有效地存在于石墨烯和氧化石墨烯片中,促进了材料表面的浸润性,使材料能够很好地分散,提高了材料的比容量。研究结果表明,在2 mol/L 的H2SO4 水溶液中,采用四丁基氢氧化铵作为表面活性剂制备的电极材料在1 A/g电流密度下的比容量达到194 F/g。Yoon 等将己烷作为反溶剂物质加入到氧化石墨烯片的乙醇溶液中,制备得到不堆叠的褶皱氧化石墨烯片和还原氧化石墨烯片,有效地提高了还原氧化石墨烯的比表面积和 孔隙率,分别为1435.4 m2/g和4.1 cm3/g,显著提升了该材料作为双电层电容器电极的性能。在6.0 mol/L 的KOH 水溶液中、1 A/g的电流密度下,比容量达236 F/g;在30 A/g 的电流密度下,比容量仍然达到171.2 F/g。Wang 等将柔性石墨烯纸与炭黑纳米粒子通过普通的真空抽滤方法制备了复合电极材料,由于炭黑纳米粒子的存在,有效缓解了抽滤过程中石墨烯自发的堆叠过程,使制备 的复合材料电化学性能超过了纯石墨烯纸的7 倍,其最大的能量密度可达26 W˙h/kg,功率密度达5.1 kW/kg。
石墨烯层间距的控制对于避免石墨烯片层的堆叠、充分发挥石墨烯优异结构特性与电化学性能具有重要作用。Hantel 等通过控制真空热还原的加热速度和还原温度,获得不同层间距的石墨烯和含不同氧官能团的石墨烯,并将其用作超级电容器的电极材料。研究发现,其电极比电容 与石墨烯的层间距、石墨烯上的含氧官能团和使用的电解质均有很大的关系,当层间距为0.43 nm,己腈作为溶剂时,其比电容达到了220 F/g,组成对称超级电容器时其比电容达到了195 F/g。
本文作者课题组杨晓伟等利用化学转化石墨烯在水溶液中的高分散性,采用过滤的方法在滤膜和溶液界面可控制备了石墨烯片层定向分布的化学转换石墨烯水凝胶 (chemically convertedgraphene,CCG),获得了石墨烯片层之间π—π 吸引力和溶剂化的排斥力之间的平衡点,具有良好的力学强度,可以直接作为超级电容器的电极应用。在此基础上,为了确保实际应用中石墨烯电极内部的片层网络 结构,采用毛细管压缩过程(capillarycompression procedure),以CCG 为前驱体,先通过真空过滤形成CCG 膜,再将CCG 膜浸润在不同比例的挥发性/非挥发性物质混合溶液中,通过毛细压缩作用,非挥发性物质、硫酸或离子液体(EMIMBF4)与水置换进入石墨烯片层间形成液 体介导的致密性石墨烯基薄膜(如EM-CCG)。
由于进入石墨烯片层的离子液体与水/离子液体混合比例有关,不同EMIMBF4 体积比将形成堆积密度和石墨烯片层间距不同的EM-CCG 薄膜,其电导率及内阻也不相同,所制备EM-CCG 薄膜基本形貌与性质。
相关新闻: