按照储能机理,超级电容器可分为双电层电容器(electric double layer capacitors,EDLCs)和法拉第准电容器(又叫赝电容器,pseudo-capacitors)。近年来,国内外对超级电容器储能技术的基础 研究呈现出爆发式的增长,取得了很多新的突破。双电层电容器的储能机理是在大比表面积的碳材料电极和电解质界面吸附相反电荷的正负离子,电荷储存在界面双 电层中,通过电化学极化进行可逆吸/脱附从而储存和释放能量。双电层电容器的电极主要为多孔碳材料,如活性炭、碳纳米管、介孔碳和碳化物衍生碳等。对于这 些碳材料,决定双电层电容性能的因素主要有材料比表面积、电导率和孔隙率,但很少有碳电极材料可以在这三个方面均有优异的表现,因此,人们仍在不断研究碳 基双电层电容器材料。
赝电容器储能机理则是在具有氧化还原活性的电极表面,通过电极和电解质之间发生快速可逆的氧化还原反应进行能量储存和释放。这类电容器的电极材料主要有表 面含有氧化还原活性位的材料,如导电聚合物、金属氧化物或金属氢氧化物。相比于双电层电容器,赝电容器的容量更大,但由于材料的导电性能较差,材料发生氧 化还原反应时结构容易被破坏,因此能量密度和循环性能相对较差。
为进一步提高超级电容器的能量密度,近年来开发出了混合超级电容器,又称“不对称超级电容器”。其中,一极采用具有氧化还原活性的电极材料通过电化学反应 来储存和转化能量,另一极则采用碳材料通过双电层来储存能量。在混合型超级电容器中,能量储存的过程仍主要发生在电极表面,电极材料的比电容、导电性、比 表面积和结构稳定性是混合型超级电容器能量储存和转化性能的决定因素。因此,为了提高能量密度和功率密度,无论是双电层超级电容器、法拉第准电容器,还是 混合超级电容器,其电极材料必须具有比表面积大、电导率高和结构稳定的特性。
石墨烯是一种由碳原子构成的单层片状结构碳材料,具有很大的比表面积(2675 m2 /g)、优异的电子导电性和导热性、很高的力学强度,符合高能量密度和高功率密度的超级电容器对电极材料的要求,是理想的超级电容器电极材料。石墨烯在超 级电容器中的应用基础研究结果层出不穷。通过不同的合成与制备过程将石墨烯与其它材料构成复合电极材料,分别应用于双电层电容器、法拉第准电容器或混合型 超级电容器。本文对近年来石墨烯基电极材料在三种不同类型超级电容器中的应用研究综述如下。
相关新闻: