1.能源利用效率高。分布式能源系统的能源利用率远远高于多数国家依靠大型主要电站,将电力从发电厂向终端用户单向传输的集中供电系统。从理论上说,“大机组、大电网、特高压”是高效率的,然而这仅仅是在能量转换环节和输送环节。如果从整个能源系统分析,结论并非如此。大火电机组虽然发电效率高,但是由于供热规模和供热半径的局限,发电余热无法利用,故其能源利用效率无法与分布式能源相比。发电厂最终只能将燃料能源燃烧产生的1/3热能转化成电能,而近50%的热能流失,传输环节损耗近10%的热能。由于分布式能源可用发电后介质的余热来制热、制冷,因此能源得以合理的梯级利用,用户可根据自己所需来向电网输电和购电,能源的利用效率达到80%以上,一些设计完善的分布式能源可以达到90%,甚至更高。
2.输配损耗更低。分布式能源作为一种需求侧就近配置能源系统,不需要长距离输电,因此可降低网损(包括输电和配电网的网损)。例如,以8%-10%的输电网损计算,我国每年电力输送环节的网损就达3个三峡水电站全年的发电量。建在需求端的分布式能源由于避免了远距离的电网供能,并且可以减少电网故障造成的损失,因此将输电网损降低到最小。
3.污染小,环保性强。据国家环保总局监测,目前我国在污染环境的各因素中,70%以上的总悬浮颗粒物,90%以上的SO2,60%以上的NOX,85%以上的矿物燃料生产的CO2均来自煤炭。与此同时,中国煤炭总量50%用于发电,发电总量的80%是使用燃煤,而发电燃煤污染占到所有污染的40%以上。而分布式能源是清洁能源利用的良好载体,分布式能源系统采用天然气做燃料或以氢气、太阳能、风能为能源,可减少有害物的排放总量,减轻环保的压力;大量的就近供电减少了大容量远距离高电压输电线的建设,由此减少了高压输电线的电磁污染;另外,由于实现了优质能源梯级合理利用,SO2 和固体废弃物排放几乎为零,温室气体(CO2)减少50%以上,NOX 减少80%,TSP减少95%。值得注意的是,更严格的污染排放标准及环保条例的执行也促进了分布式能源系统的推广。
4.适合可再生能源的发展。目前,可再生能源的利用在能源结构中所占比例很少,其主要原因除了发电成本较高之外,还有资源的分散性与目前集中式发电模式的不匹配。相对于化石能源而言,可再生能源能流密度较低、分散性强,而且目前的可再生能源利用系统规模小、能源利用率较低,用于集中供能是不现实的,而包括太阳能、生物质能、风能、地热等无污染、零排放、绿色环保的可再生能源可以在分布式能源系统中推广利用,分布式能源系统为可再生能源利用的开辟了新的途径。
5.安全性和可靠性高。目前,国内供电系统是以大机组、大电网、高电压为主要特征的集中式单一供电系统,在电网中一点故障所产生的扰动都可能对整个电网造成较大影响,严重时可能引起大面积的停电甚至是全网崩溃。而分布式能源系统作为一种区域性能源供给系统,主要建设在配电侧,具有因地制宜、就近配套、就近取材、即发即用的特点,避免了远距离能源运输导致的诸多负面影响。无论是美国东北部地区及加拿大东部地区2003年大停电,还是我国深圳2012年的大停电,都表明缺少应急式电源—分布式能源建设存在诸多隐患。即便没有意外发生,每年高峰时节市政电网负担也会过大,而分布式能源系统的建设具有削峰填谷、缓解电力紧张的优势。在极端灾害或传统输配体系事故发生之后,分布式能源在一定程度上可确保当地基本能源的供给,切实提高了供能可靠性,也提升了整个能源系统的安全性。