行业垂直门户网站

设为首页 | 加入收藏

您当前的位置:北极星智能电网在线 > 技术文章 > 正文

智能变电站关键技术及其构建方式的探讨(1)

随着电力需求的高度增长,数字经济的发展,环境监管的严格以及各国能源政策的调整,电网与电力市场、客户之间的关系越来越紧密。客户对电能质量要求逐步提高,分布式能源不断增加,传统的电力网络已经难以满足这些发展要求。为了满足电力供应的节能、环保、高效、可靠、稳定及可持续发展的要求,智能电网的建设势在必行。

作为智能电网中的重要节点,智能变电站担负了变电设备状态和电网运行数据、信息的实时采集和发布任务,同时支撑电网实时控制、智能调节和各类高级应用,实现变电站与调度、相邻变电站、电源、用户之间的协同互动。智能变电站不但为电网的安全稳定运行提供了数据分析基础,也为未来智能电网实现其高效、自愈等功能提供了重要的技术支持。本文就智能变电站的主要特征及可能应用到的关键技术进行探讨,并研究了智能变电站实现的主要技术手段。

1 智能变电站的特征

根据《智能变电站技术导则》的定义,智能变电站是采用先进、可靠、集成、低碳、环保的设备组合而成,以全站信息数字化、通信平台网络化、信息共享标准化为基本要求, 自动完成信息采集、测量、控制、保护、计量和监测等基本功能,并可根据需要支持电网实时自动控制、智能调节、在线分析决策、协同互动等高级应用功能的变电站。

智能变电站的特点首先是具有高度的可靠性,高度的可靠性是智能变电站应用于智能电网的最基本、最重要的要求。高度的可靠性不仅意味着站内设备和变电站本身具有高可靠性,而且要求变电站本身具有自诊断和自治功能,能够对设备故障提早预防、预警,并在故障发生的第一时间内对其做出快速反应,将设备故障带来的供电损失降低到最小程度。

其次,智能变电站具有很强的交互性。智能变电站必须向智能电网提供可靠、充分、准确、 电力系统保护与控制时、安全的信息。为了满足智能电网运行、控制的要求,智能变电站所采集的各种信息不仅要求能够实现站内共享,而且要求实现与电网内其他高级应用系统相关对象之间的互动,为各级电网的安全稳定经济运行提供基本信息保障。

第三,智能变电站具有高集成度的特点。智能变电站将现代通信技术、现代网络技术、计算机技术、传感测量技术、控制技术、电力电子技术等诸多先进技术和原有的变电站技术进行高度的融合,并且兼容了微网和虚拟电厂技术,简化了变电站的数据采集模式,形成了统一的电网信息支撑平台,从而为实现电网的实时控制、智能调节、在线分析决策等各类高级应用提供了信息支持。

最后,智能变电站还应具有低碳、环保的特点。智能变电站内部使用光纤代替了传统的电缆接线;集成度高且功耗低的电子元件广泛应用于变电站内各种电子设备;采用电子式互感器代替粗重的传统充油式互感器。这些不但节省了资源消耗,降低了变电站的建设成本,而且减少了变电站内部的电磁污染、噪声、辐射和电磁干扰,净化了变电站内部的电磁环境,优化了变电站的性能,使智能变电站更加符合环境保护的要求。

2 智能变电站关键技术

与已有的变电站形态相比,智能化变电站可以将先进的现代科学技术融入变电站自动化系统的应用中,通过对变电站内各种实时状态信息的获取和共享,高度集成了变电站内的各种功能,实现各种功能的灵活分布和重构。智能变电站中所应用到的各种先进技术不仅改变了变电站的传统架构,加强了变电站与电网内其他设备之间的信息交互共享,而且更好地实现了分层分布的控制管理方式,优化了站内的资源,进一步提高了变电站运行的可靠性和安全性。

现有的变电站技术并不能完全满足实现智能变电站的要求,各种技术之间的专业壁垒严重阻碍了智能变电站关键技术的发展。必须打破专业上的限制,才能更好地深入了解智能变电站关键技术的内涵并扩展其外延,以实现智能变电站设备信息数字化、功能集成化、结构紧凑化、检修状态化的发展要求。

2.1硬件的集成技术

传统变电站中信息的采集和处理过程是通过中央处理器与外围芯片或设备的配合来完成的,大量数据计算和逻辑分析过程以及一些高级应用功能的实现都集中于中央处理器中,中央处理器性能的高低决定了各种功能实现的速度与质量,这里使用的中央处理器可以是DSP(Digital Signal Processing),ARM (Advanced RISC Machines)或CPU (CentralProcessing Unit)等。这种设计的弊端在于一方面中央处理器本身集成的资源有限,不能满足智能变电站不断增加的实时处理信息的需要,从而成为智能变电站技术发展的瓶颈;另一方面,处理器本身所集成的很多其他的硬件资源因不能满足智能变电站的需要而被闲置,造成了资源浪费。另外,嵌入式系统中操作系统的删减是一项很繁琐的工作,而操作系统的复杂性也增加了系统测试的难度和出错的概率。

随着现代电子学的发展,硬件描述语言的出现使得硬件系统的设计表现出模型化、集成化、自动化的特点。这些特点使得硬件设计实现了真正的针对功能的模块化设计,可以将某些固定的逻辑处理过程在智能设备内部进行固化,将原来由某些软件实现的功能转化为硬件实现。这种设计既保证了逻辑处理的实时性、可靠性和准确性,解决了信息传输时的瓶颈问题:又节省了硬件资源的开销,提高了设备的集成度;另外,模块化的设计也便于智能设备的检修更换和升级。

硬件的集成技术在智能变电站内的应用将会打破传统变电站设备的硬件设计理念,改变变电站硬件设备的布置格局,从而翻开变电站硬件设备设计新的一页。

2.2软件的构件技术

智能变电站内的软件系统不仅能够实现传统的测控、信息管理等功能,而且还要将PMU (相量测量单元)、录波等功能进行集成,实现站内状态估计、区域集控、在线状态监测、远程维护、电能质量评估以及智能管理等高级功能,并且能够根据工程配置文件生成系统工程数据,实现变电站系统和设备系统模型的自动重构等功能。要实现上述功能,软件的构件技术的应用必不可少。

软件构件是指具有一定功能、能够独立工作或同其他构件装配起来协调工作的程序体。软件构件技术的实质是在不同粒度上对一组代码或类等进行组合和封装,以完成一个或多个功能的特定服务,进而为用户提供接口。构件技术的核心思想是分而治之,构件技术将系统的抽象程度提高到一个比面向对象技术更高的层次。软件复用技术是实现构件技术的重要手段,如何提取可复用构件以及如何组装成系统并能实现互操作是构件技术所面临的关键问题。

软件构件技术是灵活、弹性、实时的软件系统实现的重要基础,也是嵌入式系统软件设计实现功能集成的重要手段。软件构件技术的成熟应用必须依赖于良好的软件结构体系。目前,要实现各种高级应用功能在智能变电站内的有效集成以及灵活配置和重构,在软件技术方面所要解决的问题还有很多。如:软件体系结构,构件模型,构件接口,构件粒度,构件的获取、管理、组装与部署等诸多问题。软件构件技术在智能变电站中的应用反映在嵌入式软件系统设计、多代理技术等相关技术的应用中。

软件构件技术在智能变电站内的应用不仅可以减少智能变电站在功能软件的集成和开发活动中大量的重复性劳动,提高变电站软件的效率和灵活度,降低开发成本,缩短开发周期:而且能够加强系统功能间的互操作性,使系统功能在变电站内能够灵活分布,从而提高了系统的可靠性和自愈性。

2.3信息的管理存储技术

智能变电站采用具有自恢复能力的高速局域网构建全站统一的数字化信息平台,信息平台应具有自愈性故障恢复机制,有效保证智能变电站采集信息的服务质量。统一的数字化信息平台的构建体现了智能变电站信息集中管理的设计思想,信息的集中管理不仅为实现各种信息模型的集成、转换、调用和冗余等功能提供了方便,而且为一些简单的调度功能向变电站系统的下放提供了基础信息支撑和技术实现支撑。

高度集成的信息系统和统一的数字化信息平台不仅为智能变电站提供了很好的扩展性与经济性,也为信息资源的共享、动态扩展、分配提供了平台。但是,海量信息的采集也为信息的实时传输带来了困难。以太网的发展远未能满足智能变电站对海量信息的通信需要,因此,信息分优先级传输与信息就地存储显得尤为重要。信息优先级可以保证关键信息实时、准确、可靠地传输,而非关键信息的就地存储不但减少了传输网络负荷程度,而且可以为系统决策提供充分的信息依据。虚拟化的技术可以将变电站的底层硬件和网络设备虚拟成一个共享的资源库,就地存储的信息可以在库内按需分配调用。

信息优先级传输与信息就地存储技术的本质是将信息按不同粒度细化, 以实现信息的分层分布调用,从而保证信息传输的准确性与可靠性。另一方面,随着智能电网的建设和发展,电力系统信息安全与防护成为一重要课题被提上日程。信息的分层管理可对信息进行分析、评估,并依据信息的不同等级设计信息安全策略,从而提高了网络信息系统的安全性,最大限度地保证各级电网的信息安全和信息权限。

2.4标准的融合

智能电网内信息的数量和种类很多,采集渠道复杂。由于智能电网对于信息采集的设计理念的不同、算法的不同、模型的不同,导致网络内的信息差异巨大,难以充分交互利用。为了实现与智能电网的无缝通信连接,智能变电站内各种信息模型之间的转换与映射不可避免,这里就要进行标准融合。

信息模型的标准化、规范化和体系化是标准融合技术的基础。要实现信息模型的标准化和规范化,首先要有开放的通信架构,使元件之间的信息能够进行网络化的通信:其次要进一步细化信息模型,对模型的扩充及扩充原则做出标准化规定;最后要统一技术标准,形成一个多功能的多规约库,以实现各种应用系统之间的无缝通信。

来源:互联网
北极星投稿热线:陈女士 13693626116 邮箱:chenchen#bjxmail.com(请将#换成@)
最新新闻

新闻排行榜

今日

本周

本月

相关专题