行业垂直门户网站

设为首页 | 加入收藏

您当前的位置:北极星智能电网在线 > 正文

探索 | “中医+AI”会诊电力设备故障

北极星智能电网在线  来源:北极星电力网  作者:杨明俊  2019/4/2 8:18:55  我要投稿  

北极星智能电网在线讯:在 AlphaGo 成功挑战围棋世界冠军后,人工智能(AI)“深度学习”家喻户晓。电力企业有机会着眼自身战略,利用落地的 AI 技术和应用聚焦业务流程优化、效率提升以及对全新机遇的发掘。本文针对设备故障,仿照中医师“望闻问切”的看病方法融入最新的AI深度学习原理、查找和解决故障的方法,从而使设备恢复良好的工作状态。

1.jpg

1-1.jpg

图一:人工智能和深度学习的关系示意图

2.png

图二:使用中医望闻问切方法诊断电力设备故障示意图

一、望(图像识别)

望,顾名思义就是观看,中医是观察病人的面色、身形、舌苔、精神状态等。在电力企业,望也是在设备点巡检中最简单、最基本、最重要的检查手段。通过观望检查之后,大部分设备问题都能暴露出来并得到解决:如设备老化变色、形状变形、位置移位、瓷瓶开裂破损、导线断线、鸟窝在杆塔上、零部件的腐蚀损坏和脱落、联接螺丝的松动、指示仪器仪表的显示异常等情况能及时发现设备缺陷问题并及时解决。

目前,图像识别应用正被部署用于质量控制(识别产品缺陷)、安全(扫描面部和车牌)和医疗(识别肿瘤)领域。下面我将借鉴2018年4月中国长城创新的修缮方案(这是一个全新的探索,先进的无人机航拍和人工智能技术参与文物建筑的修缮和保护),来指导电力架空线路的勘察、巡视、故障查找。

3.png

图三:人工智能深度学习图像识别非常适合电力架空设备故障查找

目前长城修缮存在的困难:长城是世界七大奇迹之一,也是我国首批列入《世界遗产名录》的文化遗产。像箭扣长城等多段长城都面临着自然灾害侵蚀和人为损坏的风险,修缮工作迫在眉睫。 箭扣长城跨越崇山峻岭,保护工作绝非易事。如果是按照传统的方法,无论是勘测、测量、后期的处理,只能凭借人力用尺子、全站仪完成,耗时耗力,尤其是箭扣长城大多位于险峰断崖之上,周边草木茂密,人员想要到达施工现场可谓险阻重重。另外,传统的手工测量无法反映长城的全貌和细节,不利于保护单位做更精确的维修方案(电力架空线路巡视和故障查找也存在类似问题)。为了战胜这一近乎不可能完成的挑战,英特尔与中国文物保护基金会、武汉大学测绘遥感国家重点实验室携手, 将无人机与人工智能技术相结合,推出一种创新的解决方案,来助力修缮这座伟大的建筑。英特尔 (中国) 研究院和武汉大学将开发出长城缺损/裂缝识别与定位,数字化修复的深度学习算法。

借助英特尔® 猎鹰™ 8+ 无人机,修复团队能够通过一套更安全、更快速、更高效且更准确的流程来采集所需的数据。如果采用人工方式,修复团队需要花费数月时间。 借助无人机,只需几次快速飞行就能完成。

如何用英特尔 AI 助力长城修缮,主要分三个步骤来进行:

1、采集高精度图像:利用英特尔“猎鹰8+”无人机高精度图像采集:因为长城的跨度很大,修缮之前首先需要进行环境勘测。传统的办法是通过尺子测量以及目测,很难得到精准的数据。通过英特尔猎鹰8+(Intel Falcon 8+)无人机,工作人员能够近距离检测到长城的破损情况,可以获取高分辨率图像,帮助文保人员清晰、全面了解长城现状。这项内容和目前电力无人机巡视异曲同工。电力企业除了普通的“望”还有特殊的红外探测的“望”也可归类为图像识别。

2、3D 建模和损毁部位(长城缺损/裂缝))的人工智能识别;3D建模和损毁检测:这个过程包含了多个算法和步骤。根据无人机采集的数据,采用英特尔至强处理器能够快速分析处理上万张图片,并计算出破损的长度和宽度,规划修缮所需材料,并提供裂缝和塌方等破损的测量数据用于指导物理修缮。有了这些数据,修缮团队就无需再现场测量,而是可以通过AI算法得到最终需要的时间、人力、物力和成本。这项目前电力线路无人机巡视为人工分析,而非深入学习的人工智能自动分析,工作效率低,准确率也低。我们的架空线路、杆塔、绝缘子、导线、开关、刀闸、柱上变压器的巡视和故障查找,也很大一部分故障可以通过观看故障图片来识别,均可引入人工智能深度学习来自动研判。

3、3D 模型的人工智能数字化修复;在 3D 模型损毁识别基础上,利用最新的 3D 模型,对城墙缺损部位进行数字化修复,并据此对实际的长城修缮和维护提供指导和参考数据。

6.png

图四:极简模型(图片判断故障)

基于大数据深度学习的人工智能计算机,根据线路巡视的视频和图片,可自动识别损坏的绝缘子,结合GPS系统还可知道故障设备位置。和人脸识别技术类似,可用于识别故障电力设备(外观会破损、龟裂、变色、变形)。

技术难点:电力企业面临的一个共同挑战是需要获取足够的数据来训练图像分类和识别算法,并且图像的预处理可能占用整个解决方案一半以上的时间。最新的计算机处理器能够支持数据增强应用,可帮助解决这一难题。这些应用会旋转和扩展图像,并调整颜色。这意味着只需少量图像,就能有效训练图像识别算法(取决于具体应用案例)。

分享到:
北极星投稿热线:陈女士 13693626116 邮箱:chenchen#bjxmail.com(请将#换成@)

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。

热点关注
国网826号文解读

国网826号文解读

昨天国网公司下发了《关于进一步严格控制电网投资的通知》(国家电网办【2019】826号文)。文中提出了“三严禁、二不得、二不再”的投资建设思路。个人认为,这不仅仅是一个文件,而是国网公司整体发展战略转型的一个标志。作为世界上最大的电网企业,国网公司每年因投资建设所需的采购数额巨大,对电

--更多
最新新闻
新闻排行榜

今日

本周

本月

深度报道
相关专题

关闭

重播

关闭

重播