2.5 避雷器
目前氧化锌避雷器在电力系统得到了广泛应用,500 kV避雷器典型的伏安特性如表1所示。
2.6 变电站电气设备
在仿真计算中,变电站内的变压器可采用电容等效,其值可由式(3)计算得到,其他高压设备的电容采用额定值,结果如表2所示。
表 2 设备代号及入口电容
Table 2 Device code and its entry capacity
3 计算结果及分析
地线正常架设时OPGW和普通地线通过杆塔接地,地线绝缘架设时OPGW和普通地线均全线绝缘架设,绝缘地线临时接地点每隔一定距离接地,线路终端杆塔均设置接地点。仿真计算条件为:雷电幅值为250 kA,波形为2.6/50 μs;一般计算条件是接地电阻为10 Ω,避雷器在进线电压互感器和变压器位置架设;同时考虑变电站电气设备过电压裕度,变压器冲击绝缘水平为1 600 kV,电容式电压互感器选为1 650 kV。
3.1 雷击点的影响
雷击点分别在进线端不同杆塔上,仿真得到变电站设备的最大过电压,结果如图3所示。
图 3 雷击杆塔电气设备最大过电压
Fig. 3 Largest overvoltage of electrical equipment for tower struck by lightning
由图3可见,变压器最大过电压出现在雷击第1基杆塔时,其最大过电压达到1 675 kV;随着雷击点远离变电站,设备最大过电压值减小。雷击地线正常架设和绝缘架设下设备最大过电压差别很小。即融冰绝缘地线架设对雷电侵入波在变电站高压设备上产生的过电压几乎没有影响。这主要是因为雷电流幅值达到250 kA,地线上融冰绝缘间隙都已经被击穿,2种情况下超高压输电线路绝缘子闪络规律相同。通过上述研究,可以发现地线绝缘架设对变电站附近雷击引起的设备过电压没有明显的影响,因此从限制雷电过电压的角度,变电站附近的地线在夏季不需要退出运行。但绝缘间隙频繁击穿将影响其使用寿命,因此重雷区变电站应根据实际情况决定绝缘地线是否退出运行。
3.2 避雷器配置的影响
结合前面的研究发现,变电站设备最大过电压出现在雷击第1基杆塔时,其最大过电压已经超过变压器绝缘裕度。因此考虑在母线上安装一组避雷器,研究其对变压器过电压的影响效果。在融冰绝缘地线改造后,雷击第1基杆塔,变电站设备过电压如图4所示,其中电气设备过电压的最大值如表3所示。由表3和图4可见,未架设避雷器前,变压器最大过电压为1 675 kV;架设避雷器后,变压器最大过电压下降为1 530 kV,小于其绝缘裕度,达到了保护变压器的效果。同时,变电站其他设备过电压也有下降,达到保护变电站设备的效果,并且效果比较显著。
图 4 地线绝缘架设情况下雷击杆塔电气设备过电压
Fig. 4 Overvoltage of electrical equipment for tower struck by lightning in way of insulated ground wire