表A2 光伏和储能系统参数
以文献[23-24]的负荷数据作为仿真中的负荷年度需求预测曲线,详见附录B的表B1、B2和B3,以负荷预测曲线为负荷均值,采用1.2节所述负荷模型,其中负荷波动的方差取为相应时刻负荷均值的8%。设置光储可持续带载能力评估模型中负荷需求预测的预测误差β=3σ。
表B1 RBTS Bus6 F4馈线系统负荷数据
表B2 日负荷变化系数曲线
表B3 年负荷变化系数
光伏出力数据根据天气类型选择1.1节所述的光伏模型随机生成光伏出力数据。不同天气类型的其可信出力曲线按照本文2.1节所述求得,其中置信度α=95%。
4.2 不同孤岛划分策略比较
本文对如下3种微电网孤岛划分策略进行可靠性评估和分析。策略1:不考虑微电网中的孤岛运行;策略2:考虑孤岛运行,采用文献[6]的孤岛划分方式,即仅以静态的功率平衡作为动态孤岛划分依据;策略3:考虑孤岛运行,且采用考虑光储系统可持续带载能力的动态孤岛划分策略,Tz=1 h。
重复进行15 000次仿真计算,微网孤岛运行27 523次,表1为配电系统的可靠性评估指标结果,二次故障次数是指微网孤岛运行时因电源功率或能量不足而导致的负荷停电的总次数(个˙次)。图1给出了3种策略下典型负荷点的故障率和年平均停电时间的对比。其中LP9和LP10为非孤岛负荷,其余为微网负荷,其中负荷的优先级顺序为LP19>LP11>LP20>LP12>LP21。
表1 配电系统可靠性指标
图1 典型负荷点指标对比
由表1和图1可知:
1)考虑微网孤岛运行能够有效地提高配电系统的供电可靠性。
2)在配网供电可靠性方面,策略3除指标EENS外,其他可靠性指标均优于策略2,这主要是因为基于静态功率平衡的孤岛划分策略2没有考虑到故障期间光伏和负荷的不确定性,虽然可以在孤岛划分时刻尽可能的多带负荷减少EENS,但没有考虑孤岛内光储系统持续带载的功率和能量裕度,因此导致了孤岛运行期间出现负荷点重复切除和并入、储能电量耗尽导致微网全网停电的现象,增加了微网类负荷的故障率(参见指标微网内SAIFI和ICOSR)。
3)在重要负荷点供电可靠性方面,由图1可知,策略3能更大程度地降低重要负荷的故障率和平均停电时间;在孤岛运行过程中其储能耗尽次数为0,二次故障次数也远低于策略2,这也体现了策略3保证重要负荷优先持续供电的特点。
4.3 不同储能配置下的配电网可靠性分析
改变储能额定容量(0.5~4 MW˙h)和额定功率(0.2~1.6 MW)研究不同储能配置对配电网可靠性的影响,并区分不同的孤岛划分策略,其中,策略2和策略3的微网SAIFI如图2所示,ASAI、SAIDI、储能耗尽次数、二次故障次数和重要负荷故障率如附录C图C1至图C5所示。
图2 不同储能配置下微网的SAIFI
图C1 不同储能配置下系统ASAI