2 光储系统可持续带载能力
2.1 光伏的可信出力
光伏系统出力的不确定性使得人们只关注其电量价值,实际上光伏系统同时存在一定的容量价值[18]。在光伏装机容量等因素确定下,由于相同天气下某一时段内的光伏有功出力往往在一定范围内随机波动,其值一般远小于其装机容量。文献[19]提出分布式电源可信出力的概念,但该概念主要基于规划层面,无法体现实际运行中光伏出力水平对可靠性的影响情况。基于此,本文基于运行层面,提出了光伏可信出力的在线计算方法。定义光伏在Δt时段内的可信出力Pα(t)|Δt为:光伏在时刻t往后的Δt时段内在一定概率(置信度)α下至少能够达到的出力水平。如α=90%,Δt=15 min内光伏可信出力为P90%(t)|15min,表示光伏在时刻t往后15 min内出力水平有90%的概率在P90%(t)|15min以上。
为实现实际运行中可信出力的在线计算评估,需依靠1.1节中提出的光伏发电时序模型,通过随机抽样模拟的方法得到不同天气类型下光伏相对出力的可信曲线,其具体计算步骤为:1)建立不同天气类型下的光伏发电时序模型;2)通过抽样生成Ne个光伏相对出力日序列样本;3)通过计算不同天气类型下全天各时刻的光伏相对出力可信值PNα(t)|Δt得到光伏相对出力的可信曲线,不同置信度下的光伏可信出力曲线示意图见附录A的图A3,其中,曲线上各抽样点的时间间隔为15 min,则PNα(t)|Δt可由以下公式计算得到。
图A3 不同置信度下的光伏可信出力
式中Pr[˙]表示不等式约束成立的概率值。
根据时刻t的光伏相对出力可信值PNα(t)|Δt以及该时刻的光伏净空理论出力PDCI,通过公式(2)便可计算得到该时刻在往后Δt时段内的可信出力Pα(t)|Δt。需要说明的是,下文所提到的光伏某时刻的可信出力均指Δt=15 min的置信出力,故Pα(t)|15min简写为Pα(t)。
2.2 光储可持续带载能力评估指标
为评估含光储系统配电网在故障条件下对负荷的持续供电能力,本文提出了光储系统可持续带载能力评估指标。其中,光储系统可持续带载能力是指:在一段时间内光储系统对孤岛内负荷实现不间断供电的能力,其包含供电功率可持续和供电能量可持续两个方面,本文采用持续带载功率裕度和持续带载能量裕度两个指标描述,具体如下:
1)持续带载功率裕度Mp。故障期间光储系统在满足孤岛内功率平衡前提下可实现负荷增供的裕度,其计算公式为
式中:PLi为第i个负荷的预测需求功率;β为负荷预测误差;Pαi为第i个光伏在置信度α下的可信出力;Pidmax为第i个储能的最大放电功率;tend为预计的故障结束时刻;K为微网孤岛运行范围。
Mp(t)从功率平衡的角度反映了孤岛光储系统在[t, tend]时段内的持续带载能力,其值越大则表示光储系统所带负荷的可增裕度越大,反之则越小。
2)持续带载能量裕度Mw。故障期间光储系统在满足孤岛内能量平衡前提下可实现负荷增供的裕度,其计算公式为
式中:A(t)为该带载范围下经过[t, tend]时段后储能剩余电量;Emin i为第i个储能的允许最小剩余电量;Ere为各储能装置初始电量总和;δ为充放电效率。
Mw(t)从能量是否充足的角度反映了孤岛光储系统在[t, tend]时段内的持续带载能力,其值越大则光储系统所带负荷的可增裕度越大,反之则越小。
2.3 考虑光储可持续带载能力的动态孤岛划分策略
为保证对重要用户的持续稳定供电,本文提出动态孤岛划分策略,主要包括长时间尺度上的优化重构策略和短时间尺度上的削负荷策略,其中优化重构策略是指在一定时间间隔Tz下求解孤岛划分模型优化孤岛划分方案;削负荷策略是指在孤岛实时运行中,若有功功率不平衡量超过一定限值,则优先切除重要程度较低的负荷,以保证孤岛的持续稳定运行。所述的孤岛划分模型是以保障尽可能多的重要负荷持续供电为目标,即利用光储可持续带载能力评估指标评估目前光储系统可增供裕度,在确保形成的孤岛能稳定持续运行的前提下将更多的负荷并入到孤岛中,其数学模型为
式中:Li的取值为1或0,表示负荷点i是否在孤岛运行方案负荷集合K中;λi为负荷重要程度系数,数值越大表示重要程度越高,越先并入到K中。
约束条件中持续带载功率裕度Mp(t)≥0,保证了在一定置信度下孤岛不会因为孤岛内电源输出的功率不足而导致孤岛内负荷二次故障;持续带载能量裕度Mw(t)≥0,保证了在一定置信度下孤岛不会因为储能装置剩余电量的不足导致孤岛内负荷二次故障。
3 配电网可靠性评估
3.1 可靠性指标
传统的配电网可靠性评估指标包括:系统平均停电频率(SAIFI)、系统平均停电持续时间(SAIDI)、系统平均供电可用率(ASAI)和系统缺供电量(EENS)[20]。
为直观地衡量微网中用户供电的稳定性,本文提出一个适用于评估微电网孤岛运行的可靠性指标:微网孤岛持续运行成功率(island continuous operation success rate,ICOSR)。其为一定时间内故障情况下微电网孤岛中成功运行的用户比例之和与孤岛运行总次数的比值,即
式中:Ni为第i次孤岛时成功运行的用户数;Ns为微电网中的总用户数;Nm为孤岛运行总次数,用户成功运行是指故障期间该用户不停电。
3.2 考虑供需双波动的配电网可靠性评估
为在可靠性评估中计及配电网孤岛运行时光伏和负荷需求的波动性和随机性,本文对基于蒙特卡罗思想的可靠性评估算法进行改进,具体算法流程和方法按照传统的可靠性评估方法[21]进行,对于孤岛运行的负荷,其可靠性评估应根据孤岛的实际运行情况进行评估,现仅对孤岛运行负荷的评估流程详述如下:
1)孤岛数据初始化。预测故障修复时间T;设定光伏可信出力置信度α,计算[tocc,tend]时段内光伏的可信出力曲线和负荷预测曲线,其中tocc为故障发生时刻,即T=tend-tocc;设置动态划分时间间隔Tz。
2)令n=1,n表示此次故障时段第n次动态划分孤岛。Kn为第n次孤岛所带载负荷集合,初始K0为空集。
3)孤岛方案的确定。根据光伏可信出力曲线和负荷预测曲线,利用孤岛划分模型确定孤岛划分方案负荷集合Kn。
4)模拟运行。利用光伏和负荷模型生成的考虑随机波动的光伏出力和负荷需求曲线,根据孤岛划分方案负荷集合Kn在满足约束下模拟孤岛运行,若出现电源功率不足,切除重要程度系数较低的负荷点直至满足功率平衡,据此累计此过程中各负荷点的停电次数、停电时间和缺供电量,更新Kn。
5)判断时间nTz是否大于等于修复时间T,若是则重新抽样故障元件继续本年度的仿真,若否,令则n=n+1,t=tocc+nTz后返回步骤3)。
上述算法流程图如附录A图A1所示。
图A1 改进的配电网可靠性评估算法流程
4 算例分析
4.1 算例参数
采用改进的RBTS-BUS6系统的F4主馈线作为仿真案例,如附录A图A2所示。负荷重要等级和负荷点与孤岛电源的电气距离共同决定负荷重要程度系数,本文假定微网内负荷的重要程度系数依次为8、7、6、…、2和1,即负荷接入孤岛的优先级顺序为LP19>LP11>LP20>LP12>LP21>LP13> LP22>LP23。元件可靠性参数参考文献[22],如附录A表A1所示。光伏和储能系统参数见附录A表A2。假定微网孤岛切换成功概率为100%,微网并网运行和孤岛运行无缝连接。
图A2 改进的RBTS Bus6 F4馈线系统
表A1 元件可靠性参数