北极星智能电网在线讯: 谐振变换器由于可实现开关器件的软开关而十分适用于高压大功率场合。由此提出了一种适用于新能源并网应用场合的谐振升压变换器,该变换器利用LC并联谐振网络可实现很高的电压增益,同时具有开关管零电压开通和近似零电压关断以及整流二极管零电流关断的优点。
此外,相比于传统谐振变换器,该变换器在整个负载范围内开关频率变化范围小。阐述了该变换器的工作原理和工作特性,讨论了谐振网络参数的选择,给出了具体的控制电路,并通过一台100V/1kV、1kW的原理样机验证了该变换器的工作原理,最后给出实验结果。
随着化石能源的日益枯竭和环境恶化问题的日益加剧,我国乃至世界各国纷纷都将发展新能源提升至前所未有的高度。目前,绝大部分新能源都以交流电形式馈入电网,而新能源发电装置以及储能设备一般均含有直流环节,需经过直-交逆变环节接入电网,增加了较多的电能损耗。
其次,各种新能源如风能、太阳能、海洋能等都具有间歇性、随机性特点,而大规模新能源接入电网对传统的电力装备、电网结构和运行技术等都提出了严峻考验。直流电网技术作为解决上述问题众多方案中的一种,逐渐成为研究热点。
目前,新能源发电装置的直流环节电压都比较低,需要通过直流升压变换器接入高压直流电网,而作为各种新能源与高压直流电网连接的桥梁,直流升压变换器不仅是电能的传输者,同时又是抑制多种故障情况的缓冲/隔离者,起到了交流电网中升压变压器的作用,是直流电网的核心部件之一。
目前国外对于新能源并网用的直流升压变换器研究正日益深入,而国内还处于起步阶段。Converteam公司研究人员提出了以Boost变换器来实现±50~±200kV电能传输的方案。但Boost变换器的开关损耗和二极管反向恢复损耗都较大,导致变换效率较低,且Boost 变换器一般用于电压增益小于6的场合。
美国德州农工大学Enjeti教授提出了一种将Boost变换器和Buck-Boost变换器的输出电压相串联以得到高电压增益的方案,每个变换器提供一半的输出电压和输出功率,开关管和二极管的电压、电流应力都相应减小,并对1MW、5.7kV/132kV变换器进行了评估,但该变换器同样存在开关损耗和二极管反向恢复损耗较大的问题。
东南大学陈武等则对基于中压直流母线海上风电系统中的升压直流变换器拓扑进行了比较,并提出了一种谐振开关电容变换器,可较好地避免开关损耗和二极管反向恢复损耗较大的问题,但该变换器对输出电压调节能力有限。
则对几种隔离型升压直流变换器拓扑进行了分析对比,并指出移相全桥变换器是比较优化的选择,但移相全桥变换器在轻载时很难实现软开关,同时高压大容量中高频变压器的设计与制造难度极大,目前尚无工业样机的报道。
英国阿伯丁大学的D. Jovcic教授提出一种谐振升压变换器,可在全负载范围内实现开关器件的软开关以及避免二极管反向恢复损耗问题,并容易得到很高的电压增益,对5MW、4kV/80kV变换器进行了仿真分析,预估效率在95%左右。