电化学分析
石墨烯在电化学分析中主要应用在基于目标分子直接电化学的分析检测和用作生物电分析中的载体材料和基于石墨烯的光透电极等方面。
目标分子直接电化学分析。基于目标分子直接电化学分析检测的目标物包括:无机小分子,有机小分子,以及氧化还原蛋白质和核酸等生物大分子,如DNA 和血红蛋白等。石墨烯上可吸附蛋白质的特性使得石墨烯是研究蛋白质电子转移的理想材料。如有学者以化学还原的石墨烯氧化物修饰的玻璃碳电极(CR-GO/GC)作为新的电极体系,提出了电化学传感和生物传感的新型实验平台。另一些人研究了石墨烯氧化物(GO)修饰电极上细胞色素C、肌红蛋白和辣根过氧化物酶(HRP)等3种金属蛋白的直接电化学行为,发现GO可促进其电子转移动力学,而且其生物活性几乎不受影响。
生物电分析中的载体材料/细菌电极的载体材料。酶电极是重要的生物分析方法之一。GO表面的缺陷和含氧基团具有化学和电化学反应活性,可化学键合固定生物大分子用于研制生物传感器。基于石墨烯材料的非共价固定法用于生物传感研究也有很多例子;免疫传感是生物亲和传感的重要类别,在生物分析中占有重要地位;氧化石墨烯材料研制了三明治型免疫传感器,该传感器优异的性能是因为石墨烯具有快速的电子转移速度和大的比表面积。
基于石墨烯的光透电极。常规光透电极主要是铟锡氧化物镀膜的石英和普通玻璃,主要用于LCD、有机发光二极管(OLED)、触摸屏和太阳能电池电极等。铟锡氧化物玻璃主要存在以下问题:铟价格昂贵且储量少、铟锡氧化物镀层脆弱且常需真空环境制膜、玻璃基底缺乏柔韧性,限制了铟锡氧化物光透电极的应用。而原子级厚度石墨烯因透光性好、导电性高、机械强度大、制备成本低,是制作光透电极的可选材料,尤其是制作柔性光透电极的理想材料。基于石墨烯材料的光透电极可用于染料敏化太阳能电池中。科学家将氧化石墨烯化学还原后制得石墨烯光透膜电极,电极电导率达550S/cm,在1000~3000nm波长下透光率大于70%,虽然这种材料的透光性比氧化铟低,但产生的电流密度比氧化铟高,同时具有较高的化学和热稳定性。
石墨烯的生物安全性
对细胞毒性方面的研究。对石墨烯及其复合材料的细胞毒性的分析研究有助于判断其生物安全性程度。中国科学院上海应用物理研究所的黄庆课题组一直关注对石墨烯细胞毒性的研究,并已经发表了一系列的研究成果著作。课题组通过大量实验,发现细胞在与不同浓度下的石墨烯氧化物(GO)纳米片层进行混合后,只表现出了细胞活性的升降,细胞并未因GO浓度的不同而死亡,可见GO具有良好的生物相容性。另一方面,相同浓度的GO和还原型石墨烯氧化物(rGO)则表现出了不同的细胞毒性,而不同氧化程度的石墨烯其细胞毒性也随之不同。Hu等人研究发现,由于GO材料具有良好的吸附性,可以吸附细胞培养基中的蛋白形成包覆层,抑制其与细胞膜的相互作用,以减少GO的细胞毒性。有其他研究则显示出了GO的尺寸大小会对其细胞毒性有较大的影响,即尺寸越小的GO,其细胞毒性也越小。目前,有少数研究者认为GO对细胞的毒性很可能来源于材料与细胞膜之间的相互作用,但学界尚未对石墨烯材料和细胞膜相互作用的方式和机制进行深入研究。随着石墨烯及其复合材料被作为载药材料的现象越来越多,研究者也开始广泛关注其材料自身和血液的相互兼容性。