超级电容器方面。超级电容器又可称为双电层电容器,是一种新型储能器件,具有充放电效率高、绿色环保、安全可靠、以及循环可逆性等优点,可以广泛应用于移动通讯、计算机技术、航空航天和国防科技等领域。因此其独立支撑的电极必须具备力学强度高和电容大的特质。相对于其他碳材料,石墨烯的电导率高、比表面积大、且化学结构稳定,更加适合作为超级电容器电极材料。目前大多数研究观点认为高温环境是化学法还原氧化石墨烯的必要条件,但有科学家在真空环境下,并在200℃这一远低于理论临界剥离温度的条件下成功制得了石墨烯。相比高温法制得的石墨烯,通过这种方法制出的石墨烯,其比容量更高,达到了279 F/g。
然而,当前对石墨烯、金属氧化物以及导电聚合物复合材料的研究仍限于实验室内,还未解决如何规模化制备质量良好的石墨烯及其复合材料的问题,对基于石墨烯的超级电容器的体积比性能的研究也较欠缺。
锂离子电池方面。锂离子电池通过锂离子在正负两极之间的移动来进行工作,因此电池正极材料的导电性能则会密切关系到锂离子电池的能量密度和功率性能。实际上,大部分电极材料的比容量都与理论上可达到的比容量相距甚远,尤其是在大电流充放电时,电极材料的比容量会大幅下降。石墨烯材料因具备优异的电子导电性,被应用到锂电子电池的研究中。石墨烯层应用于电池的正极材料中,不仅可以减少电池的界面电阻,便于锂离子在电池的正负两极间传导,还有助于减慢金属氧化物溶解相变的速度,从而保证锂电池的电极在电循环周期中保持结构。有科学家采用三元共组装法,将氧化锡与石墨烯整合在一起,与表面活性剂多元协同,制备出三元有序纳米复合材料(见图1),该材料用于电极的比容量可达到760 mA•h/g,且该材料是一种良好的缓冲材料,利于提高锂离子电池电极材料的循环稳定性。
锂-空气电池方面。锂-空气电池作为理想的高比能量化学电源,成为近年来的研究热点。目前,石墨烯在锂-空气电池研究应用中,显示出突出的优越性,其不仅可以构成电池的正极材料,更表现出可观的催化活性。在锂-空气电池中,石墨烯作为催化剂或催化剂基底展示出其潜在的优势,可以提高催化效率,并且不断提高锂-空气电池的循环性能,其比表面积巨大以及多孔体系的特性提升了锂-空气电池的放电容量。科学家在电解质为烷基碳酸酯的锂空气电池中,将石墨纳米片(NGS)作为阴极催化剂,证明了与Vulcan XC-72碳电极相比,NGS电极的循环性能更好、过电位更低。有科学家制备出一种空气电极为石墨烯泡沫的锂空气电池,实验表明在锂-空气电池中电流循环20 次的情况下,其循环效率只损失了20%,并且其放电电压稳定在2.8V。