在一个单机燃料电池系统中(一个独立于电网的系统),燃料电池可以传输负载所需的最大功率,但是在瞬变现象中不能足够快地做出平稳传输电力的反应。在这种情况下,能量储备“电桥们”跨接这种瞬变现象。桥式电力是一个坚固的燃料电池备电系统的关键所在。
许多公司把燃料电池安装在能使他们的系统更耐用的地方。据Citigroup Research报道 “开关信号:分布式电信备电系统中的燃料电池,”基于对50位电讯产业成员的访问,电讯产业把可靠性视为燃料电池的主要优势之一,尽管有一种误解——燃料电池比标准导联酸性电池备电系统更贵。促使电讯产业关注高可靠性的主要因素是燃料电池已经在超过十年的时间里,在医院、邮件处理设备、垃圾掩埋、污水处理以及信用卡处理中心等领域成功应用超过10亿个工作小时。CEA电信公司最近开始为他们的客户提供燃料电池,他们说“...我们的电信消费者正在寻找一种可靠的备电解决方案;能够为重要的通讯应用提供比传统能量存储方案更高的性价比。”
当指定备电方案时,寿命周期成本是另一个需要考虑的关键因素。Citigroup Research的报道也包括了一些数据,显示在电信站点的运转中,电池的更换费用从3600美元到8000美元不等,具体费用取决于各自的功率级别、备电持续时间以及保修期长短。报道提到:“如果电池的更换周期为五年,那么以10到15年的使用期来算,燃料电池要比电池备电方案节省32%到35%的费用。”甚至在无课税扣除的情况下,报道显示在同样的基数下燃料电池的寿命周期成本也会低12%到18%。
瀑布式结构
在历史上,一个单一的电力发电方式,比如一台柴油发电机与一套简单的电池反馈逆变器不间断电源一起作为电桥使用。对于这些装置,鉴于典型的不间断电源仅能够支持八到二十分钟的载荷,一个较小的电力故障不会造成很大的影响。柴油发电机与电池不间断电源系统的一个主要问题就是可靠性和维护。电信公司需要一套典型的发电机/电池联合体系提供更高的可靠性。更复杂的构架正被引入,服务于电讯业、数据系统以及那些无法承受丝毫电力中断的制造工艺。“瀑布式”系统将一系列不同的连续供电技术(例如:发电机、燃料电池、微涡轮机)层叠使用,用短时间电桥动力技术(如:电池、超级电容器、储能轮)跨接每一次跃迁。就电桥技术中的许多可选方案来讲,总体可靠性要求是必须要考虑的。随着超级电容器产业的成熟,超级电容器比老式传统电桥技术具有更高的竞争力,在很多情况下也更有优势。
超级电容器提供的功能
超级电容器为关键任务的备电系统能够运转良好提供功能性、可靠性并减少寿命周期成本。因超级电容器被严格地用作电桥,它的高功率密度非常适合为30-100秒的短周期提供大功率电力支持。一个电池尺寸大小取决于输电时间的长短,通常它们的尺寸比实际需求大。如果一个电池的尺寸按实际所需的持续供电时间来设定,那么他将难以供应必要的电力。此外,因为相对电池来讲超级电容器依照完全不同的原理工作,超级电容器能够延时充电而无任何电容损失。而电池则因为延时充电会造成容量损失而声名狼藉。