行业垂直门户网站

设为首页 | 加入收藏

您当前的位置:北极星智能电网在线 > 技术文章 > 正文

储能技术在分布式发电中的应用(4)

4 储能技术在分布式系统中的应用

储能技术在分布式发电中起的作用可概括为4方面:

(1)增强系统并网可靠性。分布式电源发出的电能具有随机性和不确定性,能量存储使得DG即使在波动较快和较大的情况下也能够运行在一个稳定的输出水平[1]。

(2)孤立运行的DG单元切换或退出时起过渡作用。太阳能和风力发电输出具有间歇性,适量的储能可起过渡的作用,其储能的多少主要取决于负荷需求[18]。

(3)抑制DG输出功率波动,改善系统供电质量。太阳能、风能等受天气等自然因素的影响,输出电能具有随机性,而储能可以平抑脉冲功率波动[3]。

(4)使DG按照预先制定的规划进行发电,提高并网运行的可靠性和调度灵活性[19]。

4.1 并网运行

抽水蓄能机组容量已达2000MW,单元效率虽然不高,但运行可靠,寿命长,不足之处就是用于分布式发电系统,固定成本太高。到目前为止,国内已建成抽水蓄能电站装机容量约为5.7GW,占全国装机容量的1.8%。文献[20]就西藏阿里地区独特的水能、光能和风能分布的自然条件,对风光互补抽水蓄能电站的系统进行了研究。压缩空气储能与燃气轮机结合,容量可达数百MW,效率已接近60%,且寿命长,可冷起动和黑起动,其投资和发电成本均低于抽水蓄能电站,8~12MW微型压缩空气蓄能系统(micro-CAES)已成为并网研究热点,应用前景十分广阔。

飞轮储能系统的能量密度较大,占据空间相对较小,充电快捷,充放电次数无限。5kW·h/100kW等级的飞轮正在进行整机安装调试实验。国外已将飞轮储能引入风力发电系统。试验表明,风力发电系统电能输出性能及经济性能较未采用飞轮储能有很大改善。图3给出了基于飞轮和抽水蓄能的混合储能特性示意。

图3 基于飞轮和抽水蓄能的混合储能特性

水蓄冷和冰蓄冷储能虽然结构复杂,但在解决电力峰谷差的成熟技术中经济效益和转换效率较高,已有效蓄冷容积2100m3,蓄冷量5600rth的水蓄冷空调。SMES具有大容量能量/功率补偿特性,然而容量高于100MW·h的线圈在技术和经济上存在困难。在风力/蓄电池并网运行方式中,铅酸电池体积庞大,充电/放电频繁,故障率显著提高,增加了系统运行的成本,但其技术成熟,价格便宜,已获得实际应用。

SMES的ms级响应、大容量功率/能量传递特性决定了它在系统发生故障或受到扰动时能够快速地吸收/发出功率,减小和消除扰动对电网的冲击,在提高网络动态稳定性方面具有无可替代的作用[21]。目前,D-SMES(Distributed SMES,D-SMES)的容量水平达18Mvar/3MW,最大有功功率输出可以持续0.5s,最大无功功率输出可持续时间1s,足够处理电压崩溃事件[8]。我国已先后研制成功25kJ~1MJBi系SMES系统,但Bi系高温超导SMES通常采用制冷机冷却,稳定裕度低。中国电力科学研究院正在开展以液氮温区运行的YBCO—钇钡铜氧涂层高温超导储能单元的研究,并将与柔性技术相结合,进一步降低投资和运行成本。

4.2 独立运行

铅酸蓄电池技术成熟,构造成本低,可靠性好,已广泛应用于电力系统。独立运行分布式发电系统中所采用的铅酸蓄电池系统一般充电时间有限,充电功率有限,充电模式一般只限于恒流充电阶段。

钠硫电池储能密度高达140kW·h/m3,单体寿命长,充放电效率高(>90%),无记忆效应,长期使用免维护,安装容量的近2/3已用于平滑负荷,将其用于平滑DG输出功率波动,技术已成熟。2009年10月,中科院上海硅酸盐研究所与上海电力公司成功研制出具有自主知识产权的容量为650Ah的钠硫储能单体电池,并建成了一条2MW的中试生产示范线和一套10kW的储能系统示范装置。

来源:智能电网技术及装备专刊
北极星投稿热线:陈女士 13693626116 邮箱:chenchen#bjxmail.com(请将#换成@)
最新新闻

新闻排行榜

今日

本周

本月

相关专题