从而达到控制输出电压Us的幅值和相位,并最终调整并网输出电流iN的目的。此外,在US动态调整的过程中,为保证单位功率因数,输出电压向量的改变值应该使得电感上的压降UL始终超前电网电压并与之正交,如图3中虚线所示。
由上面分析可知,若取流经L的输出电流iL为状态变量,且考虑到电感和线路等效电阻r,可得该并网逆变器数学模型的Laplace表达式为
当逆变器开关频率较高时,忽略开关器件和死区的影响,则逆变器可以近似等效为一个放大环节KPWM,从而有间接电流PI闭环控制框图如图4所示。
3 控制系统硬件设计
本实验设计的高频并网逆变器系统硬件框图如图5所示。
包括TMS320LF240 DSP控制核心、电压电流检测、控制与保护、驱动、控制电源以及人机界面5部分。
电压电流检测电路与保护电路须与主电路保持隔离。因此,电网电压的检测通过工频采样变压器实现;电感电流通过霍尔元件得到。
电网同步信号检测电路如图6所示。
降压变压器输出的电网信号经过同步检测电路后输出相位和频率与电网电压相同的方波信号,最终利用DSP捕捉单元来实现简单锁相。DSP中断程序的软件滤波进一步保证了检测的可靠性。
直流电压检测电路如图7所示,
采用线性光耦来达到采样和隔离的目的,则有
式中:K3为线性光耦TIL300的传输增益。
过流保护利用了DSP的不可屏蔽中断(NMI)功能。图8所示的过流保护电路将反馈的交流电流信号与参考值进行比较,
若幅值超过了设定范围,则送中断信号进入NMI,从而快速封锁逆变控制脉冲、断开主电路,并给出相应的故障指示信号。4 软件设计与实现本文提出的并网逆变器采用单极性倍频SP.WM的控制方式,如图9所示。倍频式SPWM与普通SPWM相比,在保持开关管工作频率不变的情况下,将输出电压U8的工作频率提高了一倍,大大减少了逆变器输出的谐波,具有开关损耗小、输出滤波容易的优点,能更好地满足电网无污染的要求。
波形的生成主要依赖于DSP的通用定时器l以及比较寄存器CMPR1和CMPR2。设三角载波频率与工频的比值为240,则在一个工频周期内,定时器l 产生240次下溢中断。每次中断后通过查询正弦表,得到在每个三角波中心时刻所对应的装载值。设第n次中断时装载的值对应正弦表中第p个值,则通过图9可以推得n和p的关系如下:
n的初始值决定了图3中超前角度ψ 的大小。因此,我们一方面可以通过在市电过零时刻设定n的初值来调节ψ值,另一方面还可以通过将比较寄存器的装载值乘以调制比m,来实现幅值调节,从而得到需要的输出电压Us。
京ICP证080169号京ICP备09003304号-2京公网安备11010502034458号电子公告服务专项备案
网络文化经营许可证 [2019] 5229-579号广播电视节目制作经营许可证 (京) 字第13229号出版物经营许可证新出发京批字第直200384号人力资源服务许可证1101052014340号
Copyright © 2022 Bjx.com.cn All Rights Reserved. 北京火山动力网络技术有限公司 版权所有