3.1 按电压分层控制
Smart AVC, 实施按电压分层控制原则, 即 1000(750)、500(330)、220、110(66)、35、10、0.4kV 分层控制。
各级调度各管一层。管好下级电网及发电厂注入本级电网的无功值为优化值; 照此实施电压质量差别电价政策。智能 AVC 控制全程见图 1。
计算网络:例如 220kV 计算电网,包括从 500kV 变压器的 220kV母线开始的 220kV 网络,加上接入 220kV 网络 220kV 变压器;以此类推。
3.2 宏观电压水平控制
电网的电压水平取决于直接接入电网的全部, 起码是大多数变压器的使用变比。对已经正常运行的电网来说,基本上不存在什么问题。我国电网由于无功补偿布局不科学, 无功长距离、大功率从高压电网向低压电网输送, 从发电厂向需求侧输送, 因而从高压电网到低压电网,从发电厂到需求侧,变压器的标幺变比呈减小趋势。随着电网无功优化调控过程的展开, 变压器的标幺变比的差别会趋于减小。电网无功优化过程中的调控过程主要无功就地平衡的控制。
3.3 智能化控制过程
3.3.1 传统的大闭环控制
图 2 是在控制端(调度中心)与执行端(现场)之间形成的大闭环控制体系示意图。依赖通道传送实时数据,控制端进行状态估计、优化计算与发布指令的大闭环控制体系。
3.3.2 智能化控制
分布式就地计算与控制体系。安装在变电站的 ASVC 或发电厂的微机励磁控制器, 加分布式无功补偿计算模块,构成 Smart AVC。SCADA从现场采集实时计算需要的数据,计算注入电网要求的实时无功优化目标值,与实时无功值进行比较, 得出偏差调控量,ASVC 进行偏差纠正调控,只要每一个场站不断的进行这种闭环调控,调控一次, 电网迭代一次, 电网中的无功潮流就会逐步自趋优化。这种跟踪电网负荷不断变化调控的闭环控制过程显示了 Smart AVC 智能控制功能,体现出 Smart AVC 的一切特征。图 3 示出了就地分布式的闭环控制过程,不受通道限制,不依赖状态估计,不受调度中心是否具备计算条件限制,显示了它的自适应能力与自愈功能。
电网发生故障情况后, 运行电压自动恢复到安全控制线以上的能力叫自愈能力。自愈能力实际上就是在所有功率突增的线路两侧都能快速科学的增加补偿无功容量的能力,科学的计算显示了自适应能力。例如美加“8·14”大停电,在开始的 62min 内,有 5 条线路相继开断,且先后的相继开断过程愈来愈快,加上发生了通道故障,已经不再可能经过正常的控制程序进行无功补偿, 只能通过分布式计算与就地闭环紧急控制体系, 阻止停电范围的扩大。
京ICP证080169号京ICP备09003304号-2京公网安备11010502034458号电子公告服务专项备案
网络文化经营许可证 [2019] 5229-579号广播电视节目制作经营许可证 (京) 字第13229号出版物经营许可证新出发京批字第直200384号人力资源服务许可证1101052014340号
Copyright © 2022 Bjx.com.cn All Rights Reserved. 北京火山动力网络技术有限公司 版权所有