3.3 影响因素及灵敏度分析
下面分析储能容量优化配置模型中参数设置对配置结果及总收益的影响,主要包括所采用的光伏电站原始数据天气状况、频率响应辅助服务电价等几个方面。
(1)天气因素。
取不同天气状况的光伏出力原始数据进行优化配置分析,得到储能优化配置结果如表5所示。
表5 不同天气类型下电池容量优化配置结果
Table 5 Configuration results under different weather conditions
由计算结果可知,天气状况不同会导致容量配置结果的差异。若原始数据为晴天,光伏电站出力较大且平滑,则储能配置需求最少;若均取自雨天,光伏出力很小且抖动剧烈,储能配置结果最大。根据不同原始数据计算出的光储系统年收益差别非常明显,因此,在选取光伏出力数据时应当综合考虑各种天气状况,才能使配置结果合理且经济。
(2)频率响应辅助服务电价。
改变频率响应辅助服务电价
这里分别取为实时电价λm的0.8倍、1.2倍、2倍,得到储能优化配置结果如表6所示。
由优化结果可以看出,随着频率响应辅助服务电价的升高,储能电池容量优化配置结果有增大的趋势,且光储系统年收益增加,说明辅助服务价格越高,配置储能的经济性越明显。从另一方面来说,储能应用的推广依赖于电力市场机制的激励和辅助服务市场效益的增加。
表6 不同频率响应辅助服务电价下电池容量优化配置结果
Table 6 Configuration results with different frequency response ancillary service price
4 结论
目前储能成本较高,但在电力市场机制健全后,配置储能仍有望提高光伏电站整体经济效益。基于此,本文讨论了储能系统的潜在收益和其应用于电力市场辅助服务的可能性,考虑光储联合系统参与系统频率响应辅助服务,提出一种储能容量优化配置的方法。结果表明,配置储能并参与系统频率响应调整辅助服务能调高光伏电站的总收益。最后分析了储能容量优化配置模型中的敏感因素的影响,发现天气类型、调频辅助服务电价等均会导致配置结果的差异,其中调频电价升高会使得储能配置经济性更好,能促进其在电力系统中的应用。