由欧洲多家大学和企业联合承担的通用柔性电能管理项目(universal and flexible power management,UNIFLEX-PM)提出一种三端口PET拓扑,并研制了实验样机,其拓扑如图11所示[39]。该PET中三个端口均为交流端口,各端口通过直流节点交错连接,实现端口间的能量交互。而文献[50]提出基于高压直流母线的多馈入PET,形成输入级的多端口PET拓扑,可接入多个高压交流电网。
图11 文献[39]中UNIFLEX-PM提出的多端口PET拓扑
为了减少高频变压器数量,文献[33,45]利用多绕组变压器构建基于多有源桥(multi-active bridge,MAB)的多端口PET拓扑,如图12所示。此类拓扑所需高频变压器数量少,具有更好的功率密度优势。但是由于多绕组变压器使得PET的多个端口之间的功率存在很强的耦合,因此需要较复杂的解耦控制实现各端口功率协调与均衡。
多端口PET具有多样化的电气接口,能够满足未来交直流混合配电网多种形式负荷、电源及储能设备的接入要求,并实现多类型能源的综合高效利用,完全可以作为能源互联网中的“电能路由器”[3]。但是,现阶段的多端口PET各个端口间进行能量传输过程所经过的电能变换环节数量较多,效率较低,而且各个端口之间存在耦合。因此,减少多端口PET的电能变换环节数量,降低系统复杂程度是未来多端口PET的重要发展方向。
图12 文献[45]中基于MAB的多端口PET拓扑
2 PET的控制保护技术
PET的高性能控制及保护涉及调制及软开关技术、电压/电流/功率等电气量的控制策略以及故障保护技术等,对PET的电气特性、损耗、可靠性有着极其重要的影响,也是PET的研究热点之一。
2.1 PET的调制及软开关技术
PET的调制主要是指控制PET主电路中各类功率半导体器件,使其按一定规律导通或关断的技术。通过不同的调制方法可使得变流单元输出一系列脉冲电压/电流波形,并通过调节脉冲电压/电流的脉宽、频率和相位等实现变流单元电压/电流或变流单元之间交换功率的控制。由于PET中电能变换环节类型较多,需求多种多样,因此调制方法一般也无法统一。在高压交流侧的多电平变流环节(如CHB、MMC和NPC),一般功率半导体器件处于硬开关工作状态,可以采用如正弦脉宽调制[49]、载波移相调制[48]、空间矢量调制[40]等方法,通过优化调制方法来降低开关频率可实现器件开关损耗的降低。而在隔离级高频环节一般调制需要结合软开关技术,实现功率半导体器件的零电压开关(zero voltage switching,ZVS)[101]或者零电流开关(zero current switching,ZCS)[49,55],以减小器件开关损耗,提高开关频率。
三级型PET中的矩阵变换器的调制通常用开关函数矩阵来描述,所采用的方法包括直接变换法、间接变换法以及电流控制方法等[10,13,17]。矩阵变换器还需考虑在换流时双向开关器件之间不能有死区和交叠等因素的限制,否则易导致开关器件损坏。文献[98]中提出的四步换流法,文献[24]中提出的软换流策略均是通过调节各开关器件的开关时序实现开关安全换流。
软开关是降低PET中隔离级DC-DC变换器损耗、提高高频变压器工作频率的重要技术,对PET的运行效率、功率密度和散热设计有着重要影响。文献[23]介绍了一种开环控制的软开关技术,以LC串联谐振型DAB电路为对象搭建了400kW原理样机。样机开关器件均采用4.5kV IGBT,整流侧和逆变侧变流器采用开环的同步方波调制,方波信号占空比为50%、频率为8kHz,实现了IGBT的ZCS。文献[31]分析了LLC谐振型DC-DC变换器的软开关控制技术,并指出由于6.5kV IGBT有较厚的N-层和低掺杂浓度,开关过程的换流时间较长,影响了开关频率的提高,设计合理的励磁电抗可以提高开关频率、减小损耗。在此基础之上,文献[101]进一步针对6.5kV IGBT器件的开关特性进行分析,认为IGBT的关断电流、结温、载流子寿命控制等对软开关性能及损耗有着重要影响。
2.2 PET的控制技术
一般而言,PET的电气端口应具有电压/电流/功率的实时调节能力,可实现电能双向流动,从而可以接入不同类型的电源、储能和负荷等设备。PET对交直流电压、电流和功率等电气量的控制通常主要包括:
1)PET内部变流器的电压与功率均衡控制,即对于高压交流侧的多电平变流器,如CHB、MMC和NPC,需要对多个直流储能电容电压进行均衡控制,以提高交流侧输出电压性能和系统稳定性;同时低压侧通常采用隔离级直流端并联结构,控制并联子模块的功率/电流均衡也是实现PET稳定高效运行的关键技术。
2)PET端口电压/电流/功率控制,即PET各端口可根据离网、并网运行方式或不同类型的电源、储能及负荷接入情况选择多种控制策略,对端口的电压、电流及功率等交直流电气量进行实时地调节和优化控制,以提高综合能源利用效率。
2.2.1 PET内部均衡控制策略
针对PET内部电压与功率均衡控制问题,文 献[41]提出一种用于单相五级CHB型PET的共占空比电压均衡控制方法,可实现各DAB直流电压均衡控制。文献[48]主要针对五级型PET的隔离级DC-DC变换器的功率平衡问题,考虑高频变压器参数差异的情况下,提出一种基于平均功率反馈控制策略,实现各级DAB功率均分。文献[86]通过分析PET中CHB电容电压波动非线性特性,提出一种电容电压波动抑制方法以降低电容储能需求。文 献[69]提出一种PET高压输入级的相间和相内直流侧平衡控制方法,以及隔离级的并联DAB均流控制方法,可实现高压侧级联子模块串联均压和隔离级并联子模块均流控制。
2.2.2 PET端口电压/电流/功率控制策略
针对PET端口的电压和功率实时控制问题,文献[39]提出一种基于三相静止坐标系下的集成直流电压、交流侧有功与无功功率的闭环控制策略。文献[44]提出基于PET在微电网并网运行中的下垂控制,可提高微电网运行模式切换时的稳定性。文 献[42]提出PET的软启动控制方法以抑制启动冲击电流。文献[6,54,67-68,93]开展了基于PET的直流微网潮流控制及能量管理策略的研究。文献[71]介绍了一种具有同步电机特性的PET拓扑,不仅具备配电网电压/频率的调节能力,还能够治理电网谐波,降低并网电流的THD。文献[46]介绍了适用于PET分层分布式控制保护的硬件平台及软件架构。文献[54]将三相五级CHB型PET拓扑的高压侧CHB采用角形连接方式,将各相隔离级独立连接或者交错连接,并比较了两种连接方式带不平衡负载的抑制能力,提出针对交错式连接的全工况自动平衡策略。文献[33]提出针对多端口PET的功率协调控制策略,以实现各端口功率解耦控制。
2.3 PET的故障保护技术
PET中大量功率半导体器件的应用,以及多种控制策略的使用,使其具有与传统工频变压器显著不同的故障特性。受功率半导体器件承受过电压、过电流能力较差的限制,除了设计阶段合理选择器件参数外,通常还需采取一些故障监控及保护技术,防止器件过电流、过电压损坏,保证PET的可靠运行。另外,PET设备故障保护技术还包括一次设备的功率电路冗余设计、实时故障检测、定位、平滑切换,以及测量和二次控制保护设备的冗余设计、故障检测及平滑冗余切换方法等。
PET接入电网或其它各类型设备之后,给电网和其他设备的安全稳定运行也带来了挑战。研究PET在电网或负荷故障情况下的故障特征,进行故障检测、定位,并研究穿越运行和隔离策略也至关重要。针对PET的故障保护,文献[76]开展了PET在过流、过压条件下的控制与保护策略研究。文 献[81]以CHB型 PET拓扑为例,面向中压交流输入、低压交流输出的典型应用,分析了PET的保护策略。针对不同短路故障类型以及过压场景分析,提出高压交流侧单相对地短路故障以及高压交流侧缓波前过电压对PET而言是极其严重的故障。低压侧端口故障保护技术的主要难点是如何实现线路短路故障下PET穿越运行,以实现系统故障定位及外接设备保护的选择性。一般可通过配合固态开关、限流器和故障电流控制器等先进保护设备的应用,降低PET故障保护设计的难度,并提高系统可靠性[88]。
3 PET中的高频变压器优化设计
PET中的高频变压器是实现电气隔离和电压等级变换功能的核心元件。首先需要说明的是,本文中的“高频”是与工频变压器的“工频”而言的相对概念。一般来说,过低的工作频率会使得变压器铁心体积较大,而过高的频率会使得变压器及其连接的电力电子变换器损耗增加,给系统散热带来困难。实际上,对于可以隔离10kV或更高电压的高频变压器来说,由于爬电距离、空气间隙等绝缘因素的限制,一般工作频率高于数kHz之后,即便继续提高频率,高频变压器本身的体积很难继续减小;而因工作频率提高带来的变压器及变流器散热需求增加,需要另外增加散热设计,反而可能会增大PET系统的体积。因此,PET中高频变压器的工作频率设计需综合考虑系统的体积(功率密度)、绝缘、散热等多项性能的协同优化。所以,目前研制的PET样机中,高频变压器工作频率一般在400Hz~20kHz之间,有些文献中将这些变压器称为中频变压器(medium frequency transformer,MFT)[18-22,24,27,30,64,96,103]。
PET中的高频变压器通常由绕组、铁心、绝 缘/散热结构等组成,相关文献也主要针对这些环节及整体的优化设计中存在的技术问题开展了大量研究,下面分别介绍。
3.1 高频变压器绕组与铁心的绕制形式
PET中高频变压器的绕组由于通过的电流频率较高,其集肤效应和邻近效应比工频变压器要更加显著,因此一般采用利兹线(Litz wire,即多股绞合线),以降低绕组本身损耗[19,78,97,102,104]。而这些绕组与铁心的组合关系通常可以采用与传统工频变压器类似的螺线管型结构(solenoidal structure),即绕组以螺线管形式绕制在铁心上。但是,螺线管型绕组的高频变压器存在如下问题[1,105]:
1)由于绝缘处理、机械安装要求等因素限制,螺线管式绕制方式下的变压器漏感较大,导致变压器损耗也较大。
2)螺线管型绕制方式很难对变压器的漏感进行精确控制,而在很多场合,高频变压器的漏感需要参与实现PET中DC-DC变换环节的软开关,而漏感参数不准确对系统设计不利。
3)螺线管型绕制方式下的铁心一般需要采用非圆环型的特殊形状,例如C型、E型等。在高频工作方式下,铁心切割或加工的边角等磁场变化显著的部位会产生很严重的边缘效应,并在这些位置产生比其他位置更多的热。这也给高频变压器的优化设计和散热处理带来困难。
为了解决上述问题,在PET样机研制中很多文献采用了另外一种特殊的高频变压器绕组绕制形式,即同轴电缆型绕组(coaxial structure)[18,23,105-109]。所谓同轴电缆型绕组就是将同轴电缆的内、外导电层分别作为变压器的原、副边绕组,然后将同轴电缆绕制在铁心上,典型的结构图如图13所示[106]。同轴电缆型绕组的高频变压器可以实现极低的漏感,且可以采用圆环型铁心,磁场分布及发热更加均匀。
图13 高频变压器的同轴电缆型绕组
尽管如此,相对于同轴电缆型的绕组,螺线管型绕组的高频变压器还是获得了更加广泛的应用,因为后者通过控制绕制的匝数,各个绕组之间可以实现灵活的变压比,而前者一般更适合1:1变比的场合应用。另外,螺线管型绕组的高频变压器生产工艺更加简单,造价较低,而同轴电缆型的绕组在处理原副边的绝缘时更加困难。此外,在需要采用移相控制的DAB作为PET的电气隔离环节时,通常需要高频变压器具有较大的漏感以便控制变压器传输的功率,而同轴电缆型的变压器一般漏感很小,此种场合使用时还需要另外配置高频电感,增加了系统的复杂性和造价。
3.2 高频变压器的铁心材料
除去高频变压器的绕组及铁心结构之外,铁心的材料对于变压器的性能,尤其是损耗和功率密度等也有着决定性的影响。对于工作频率在400Hz~20kHz的高压大功率变压器来说,可选的铁心材料一般包括硅钢、铁氧体、非晶和纳米晶 等[1,18,22-24,97,102-104,106-107]。硅钢具有很高的磁导率且饱和磁通密度也较高,但是高频下硅钢的损耗很大。相较而言,铁氧体材料的损耗较小且价格便宜,但是其饱和磁通密度较低,用其制造铁心时体积较大。对于PET中工作频率从几百Hz到几千Hz的高频变压器铁心来说,铁基非晶合金比较合适,因为其饱和磁通密度可以高达1.56T,而其损耗处于中等水平。但是,当高频变压器工作频率达到数十kHz时,一般只能通过降低磁通密度来减小损耗。当然,这会增大变压器体积。另外一种选择可以考虑钴基非晶材料,因为其损耗比铁基非晶一般小很多。不过,钴基非晶材料的饱和磁通密度也更低。综合考虑功率密度和损耗时,纳米晶材料通常可能是最佳的选择。因为纳米晶材料的饱和磁通密度一般远高于铁氧体,而其损耗在多种材料中一般最小。但是,纳米晶材料通常价格较高,且其原材料一般是成卷的带材,具体设计变压器时还需要更多的加工和处理。