3.智能配电自动化系统
目前,我国中低压配电网大部分都没有安装高级监测装置,对电网运行状态的控制也没有达到智能化程度,当大规模清洁能源并入电网后,将会使得原有电网系统变得更加复杂和难以控制,其运行故障发生的可能性也会随之加大,尤其是频繁的启动停止等操作、功率输出不稳定等因素,都对对潮流监测和控制产生一定影响,给电网安全运行构成威胁。因此在清洁并网技术研究中,加强发展智能配电自动化系统必不可少,在其控制中心构建多代理系统,将大型可再生能源自然接入电网体系,既不显得突兀,也能有效提高电网建设智能化。
4.高级控制技术
在清洁能源并入智能电网的研究中,还需要借助高级控制技术的强大支撑力量,为清洁能源的并入、调度和控制提供技术条件,为提高电网安全、稳定运行提供保障。高级控制技术能够实现同时针对多种发电厂数据控制,充分发挥风能发电、太阳能发电、光伏发电、生物燃气发电、水能发电等利用多种清洁能源发电的绝对优势,使得整个电网供电质量和效果得到提升。
5.故障检测和保护技术
电网在运行过程中,会受到大自然气候变化和恶劣天气条件的影响,从而出现各种故障,而清洁能源利用对这些变化比较敏感,因此在清洁能源并入智能电网之后,我们必须通过强大的故障检测和保护技术对运行中可能出现的问题进行排除和预防,以保证供电系统的稳定性和可靠性。当清洁能源供电过程中出现故障,系统将自动转为孤岛体系,对电网供电不构成影响,当故障排除后,清洁能源供电系统将自动接入智能电网,恢复正常供电状态。
6.清洁能源接入标准
一旦大规模开始实施清洁能源并入电网的计划,首先应该针对并网环节制定相应标准和规范,使得并网措施具备规范性和统一性。由于清洁能源具有间歇性特点,因此在制定标准的时候,要对这种情况的具体做法进行详细规定,设计合理的并入网点和容量,并通过科学计算方式分析风、光、火、水等清洁能源的捆绑输出量,有效提高清洁能源的安全性和稳定性。
结语:
在智能电网建设中并入清洁能源,是实现大规模利用清洁能源的关键,对改善我国能源消费结构、生态环境质量以及气候变化等问题都具有重要的战略意义。我国清洁能源并入智能电网技术还处于研发阶段,因此无论是学术界专家学者还是技术界工程师,都应该结合我国国情发展和人们生活需求,加强清洁能源并网技术研究,以期望能够解决好我国能源和环境等问题,为社会可持续发展提供保障