石墨烯材料制备
石墨烯材料可分为两类:一类是由单层或多层石墨烯构成的薄膜;另一类是由多层石墨烯(10层以下)构成的微片。
目前石墨烯制造方法多达几十种——物理方法主要有机械剥离法、取向附生法和加热SiC外延生长法;化学方法主要有电弧放电法、化学剥离法、氧化还原法和化学气相沉积(CVD)法。各种制备方法获得的石墨烯材料应用领域有所不同,比如采用电弧放电发制取的石墨烯更适合作为超级电容器的电极材料,而可用于制造集成电路的石墨烯材料的制备方法是加热SiC外延生长法和CVD法。
加热SiC法
加热SiC法是在SiC晶圆的Si面或C面上,通过加热使Si原子蒸发掉而在SiC上形成石墨烯层。该方法制作的石墨烯材料层数可控,面积较大,具有较高的载流子迁移率,能够研制出高性能的射频芯片。但目前受SiC晶圆尺寸的限制,这种技术最多只能生长出4英寸晶圆级石墨烯,尺寸虽无法与现代芯片所需的12英寸Si材料相比,但是晶圆质量与Si晶圆相当甚至更好。2015年,北京大学采用氢辅助法在4H-SiC表面外延生长出高质量石墨烯,其中氢充当了碳刻蚀剂的作用,产生的石墨烯层面积更大,厚度更均匀。
化学气相沉积(CVD)法
CVD法是以铜和镍等金属材料作为衬底来生长具有原子级厚度的石墨烯材料。
这种方法获得的石墨烯材料的面积大、导电性高、透光性好和成本低,而且CVD法制作石墨烯器件的工艺与硅工艺非常兼容,是纳米半导体器件的主要发展方向。2013年,中国航空工业集团公司北京航空材料研究院宣布已在铜箔表面制备出12英寸以上的石墨烯薄膜,大尺寸、高质量的石墨烯薄膜制备技术也已突破。
石墨烯材料应用前景
因石墨烯具有的较高的载流子迁移率、极高的载流子速度、优异的等比缩小和有限的散射等特性,是电子器件和集成电路的首选材料。在射频领域,已研制出性能极高的零带隙大面积石墨烯MOSFET、双层石墨烯FET等产品;在石墨烯数字逻辑方面,已出现了双层石墨烯晶体管、纳米带晶体管和隧穿FET及相关电路。
在光纤通信方面,因石墨烯中的电子在迁移时,不会因为晶格缺陷或引入外来原子而发生散射,即使周围碳原子发生挤撞,石墨烯内部受到的干扰也非常小。若将传统的信号传输铜缆替换为石墨烯,不仅传输线缆的重量降低,强度增大,信道降噪抗干扰能力也会得到极大地提升。虽然光纤传输速度快,效率也高,但是数据传输过程中,光电转换比较麻烦。如果用石墨烯替代光纤应用于有线传输,不仅能保障传输速度和质量,还能免除广电转换过程,进而省去了一大堆光电转换设备及研究、制造经费。
在传感器制造方面,因石墨烯仅吸收2.3%的光,并使所有光谱的光均匀地通过,具有非常好的透光性,可以用于传感器的制作。据新加坡一个科研团队展示的科研成果,石墨烯感光元件的性能比传统传感器强1000倍——在昏暗的光线环境中, 这类传感器依然能够捕捉到较为清晰的物体影像。

(石墨烯传感器)