总而言之,以智能交通的技术手段提高信息采集强度及采集量,并提高其数据处理水平,继而把所得信息通过各种不同渠道传送给每个有需要的人,智能交通正在提高整个交通系统的应变性和个人出行的应变性。
几年前,海康威视已经布局大数据和云计算,并在武汉市成立了大数据和云计算研发中心。目前,海康威视已推出了大数据的初步应用,主要在三个方面:人脸数据的大库检索、海量卡口数据的高效检索分析和案事件数据的分析。
大数据的魅力在于我们可以从数据中找规律,它能使原来的“事后检索”变成“事前预判”。海康威视大数据库检索,可以做到将犯罪分子人脸、作案车辆等特征图片放进视频图像库里进行搜索比对,寻找犯罪嫌疑人的踪迹。
例如,在南方某座特大城市,针对某系列案件,警方运用海康威视的大数据技术,通过大量信息的检索、比对和分析,发现嫌疑人每次作案前均会到某个地方落脚的规律。当地警方提前在落脚点布防,成功抓获了准备再次作案的嫌疑人。基于大数据的云计算搜索,就像百度搜索关键词一样迅速找到想要的东西,不需要像从前一样由多名警察一帧一帧盯着事发地点的监控录像,寻找作案嫌疑人。
大数据还必须做到“秒级响应”,反应迟缓的话,大数据也就失去了价值。海康威视在多个城市的电子卡口系统中应用了大数据技术,在上百亿条车辆记录中快速搜索,几秒钟甚至零点几秒锁定结果。在此基础上,可以更好地实现如套牌车辆研判、跟车关联分析、违法多发时间和地点研判、交通流量分析和交通诱导等应用。
2.调整更改
在传统的规划过程中,设计部门根据对现状的判断和经验的积累,容易对交通项目进行个人意志和团队意志的主观操作,更有某些小型设计单位采用闭门造车的方式进行拿来主义的设计,这与规划的本职形成严重对峙,更不符合互联网+时代下对大数据应用的渴求。
对于城市管理者或是城市交通管理者、公路交通管理者,智能交通是帮助提高其管理的技术手段,大大提高管理者获取数据的能力,提高他们的决策能力和管理交通的能力。
举个最简单的例子,道路的渠化由交通设计院规划设计,然后施工建设。然而道路及其周边区域的情况不是一成不变的。随着城市的发展,道路起初的设计可能无法满足市民的实际需求。比如城北新建了一个工业园区,那早高峰往北面上班的车会明显增多,同时晚高峰从城北返城的车会增多。这时之前设计的道路显然不足以满足市民的需求,道路再次设计成潮汐车道或者是可变车道均可提升道路的通行能力,满足市民的需求。但是二者如何选择,抑或两个方案一起实施,一直是困扰交通管理者的一件事情。这时,道路上安装的电子警察、卡口和视频检测器所采集的过车信息和车流量数据就可以为道路的渠化提供有用的信息。