二、氮化处理对环境的影响问题
若工业化生产中采用实验室中常用的浓硝酸处理氮化工艺,确实环评很困难通过。
在某国家级产业中心工程中,已使用了一种简单、低成本地解决氮氧化物污染的技术。后巴斯夫为获得此技术和其它关键技术收购了此公司至今也已十多年,生产线还在正常生产。若中科院上海硅酸盐所的超级电容器工业化时采用此净化工艺即可解决对环境影响的问题。
三、能量密度问题
能量密度是超级电容器的“死穴”。为提高超级电容器的能量密度,国内外都投入了大量的资金和人力在研究。但是,国内外研究的路线,基本是研究新型电极材料以提高电极的比容量,或研究于电极表面产生化学反应的复合型电极,中科院上海硅酸盐所的超级电容器公开之前,超级电容器的能量密度问题还没见突破性进展。
通常超级电容器的碳电极的比容量小于250法拉/克,目前已知最高比容量的材料为氧化钌,其比容量为900法拉/克。但氧化钌的价格太贵,工业生产中不可能应用。黄富强研究员等采用氮化技术将石墨烯电极的比容量提高至855法拉/克,是目前已报导的高比容量材料的最高水平,这是难能可贵的。
众所周知,提高超级电容器的工作电压即可提高电容器的能量密度,因为电容器的储能量与电容器的工作电压的平方成正比。
超级电容器用电解液主要采用水系电解液。水系电解液工作电压一般不超过1V,但与有机电解液相比,水系电解液的导电性较好(如H2SO4溶液可达0.8S/cm),价格较低,而且比较环保。
提高超级电容器的工作电压的研究,国内外都集中于研究新型高电压工作的电解液。采用有机电解液能提高超级电容器的工作电压(2.3-2.7V),可用于3V的离子液体电解液也有报导,但是也因制备成本高,工业化生产也难以接受。
还有什么办法可提高超级电容器的工作电压呢?从电极结构改进提出的极化膜超级电容器,将有可能解决这一问题。