
图2 室温聚碳酸酯基全固态聚合物电解质的制备流程图
传统的聚丙烯腈的聚合物电解质具有较高的离子导电率优点,但物性较脆,加工性能不好,研发团队采用新型的聚合物电解质基体(ACS Appl. Mater. Interfaces, 2015, 7, 4720-4727;Electrochim. Acta 2015, 157, 191-198;Electrochem.Comm. DOI : 10.1016/j.elecom.2015.10.009),结合“刚柔并济”的设计理念,实现了腈基聚合物电解质加工性能等综合性能的提升。
凝胶的聚合物电池在提高动力电池的安全性方面起了重要的作用,但仍采用少量易挥发和燃烧的碳酸酯类溶剂,在高温或极端条件下使用时仍存在一定的安全隐患,难以完全满足电动汽车对动力锂电池在高能量和安全性能等方面的苛刻要求。因此,开发新型高安全性全固态电解质体系对提升高能量密度动力锂电池的综合性能具有重要意义。
针对传统的PEO体系的较低的电位窗口和较差的尺寸热稳定性和力学强度,研究人员采用高电位的氰基丙烯酸酯作为提升电位窗口的材料;同时采用热固性的纤维素无纺膜作为刚性骨架,提供尺寸热稳定性和部分改善力学强度,开发出一款力学强度高、电化学窗口宽以及尺寸热稳定性好的高安全性全固态聚合物电解质,相关研究成果发表在国际期刊(Scientific Reports, 2014, 4, 6272)。针对PEO的室温离子导电率较低的瓶颈问题,研究人员立足科学问题本身,从影响离子电导率的分子结构出发,结合离子传输机理与动力学传输的多尺度机制,设计出一款无定形的聚碳酸酯基室温全固态聚合物电解质,经表征发现:该款全固态聚合物电解质室温电导率可达到10-4S/cm数量级,电化学窗口为4.6 V,倍率性能较好,室温长循环1000圈容量保持率为90%。相关研究成果发表在国际期刊(Advanced Energy Materials, DOI: 10.1002/aenm.201501082)。

图3 全固态聚合物锂电池的四次针刺照片
该研究团队制备的全固态聚合物锂电池用针刺试验验证其安全性能(图3)。通过测试发现:组装的6 Ah大容量三元体系全固态聚合物锂电池显示出极佳的安全性能,经四次针刺后,全固态锂电池不起火,不爆炸,这是传统的液态锂电池所无法比拟的。这再次证明“刚柔并济”电解质体系在提升高能量密度锂电池安全性能方面的优势。
青岛储能研究院采用“刚柔并济”的电解质设计理念实现了在高能量密度聚合物电解质电池关键材料研制方面的一系列进展,并与中天科技公司合作开发大容量高安全动力或者储能用单体电池(能量密度达到300 Wh/kg)的产业化技术,协力推进高能量高安全的全固态动力电池的产业化。同时研发团队将此设计理念应用于积极探索新一代的超高能量密度的锂空二次电池的开发,且已有可喜进展。(Adv. Science,2015,DOI: 10.1002/advs.201500092)。
以上工作得到中国科学院纳米专项、中科院青岛能源所135项目支持和山东省前瞻性专题基金支持。