需要注意的是,固态变压器与智能能量管理系统相结合可构成未来能源互联网中所谓能量路由器的新概念和新装备。智能能量管理根据收集的电力局域网、分布式新能源发电和储能设备状况以及用户负荷变化等信息做出能量控制决策,
通过控制指令发送给智能固态变压器执行,重新根据需要调控电力潮流,即智能能量管理借助信息流和电力变换实现对能量流的有序控制。
1.6 电力传输与信息传递技术相互融合
随着智能电网的建设和新能源的接入,电力系统已发展成为一个整合了通信系统和人造物理系统的信息物理能量系统(cyber-physical energy system),电力系统从单向的能量流转变为能量流、信息流的双向流动。
用于智能控制和管理的先进计量设施(Advanced Metering Infrastructure,AMI)目前正广泛应用于电力系统中,美国已经在全国范围内铺设了1000个同步相量测量单元和1500万只智能电表。2012年,美国的AMI的渗透率已高达30.2%。
十二五期间,中国计划安装2亿只智能电表,目前智能电表的渗透率不足40%,但未来将达到90%。在基础设施建设逐步完善的前提下,2015年政府工作报告首次提出“制定‘互联网+’行动计划,推动移动互联网、云计算、大数据、物联网等与现代制造业结合,促进电子商务、工业互联网和互联网金融健康发展,引导互联网企业拓展国际市场”。这必将大力助推电力与信息融合技术的发展。
然而,由于通信网络在电力系统的监测、控制和管理中应用十分广泛,新一代电力系统在网络安全方面出现了新的脆弱性。
此外,广域测量系统以及智能电表的广泛使用对于系统运行者来说增加了系统整体的可观性,但对于恶意攻击者来说,也增加了系统整体的攻击表面,使得信息能量系统的脆弱性问题和安全保障开始得到极大重视。
例如,美国能源部指出,解决信息安全问题是提高全国电力系统安全性和可靠性的关键。2011年美国工业部门和政府合作提出了实现能量传递系统信息安全的发展路线。美国能源部也提出了用于防止能量传递系统网络攻击的策略。