1.2智能配用电大数据应用的国内外研究现状
智能电网的目标是建设覆盖电力系统生产全过程的实时系统,而对这个系统提供安全性、可靠性、坚强性支撑的则是电网的全景、实时数据,以及对这些数据的快速分析和对分析结果的应用。因此在本质上,智能电网是大数据在电力上的应用。
2012年IBM公司提出,电力能源由单向的电力流动扩展到电力与数据信息的多向流动,这将为传统的电力行业价值链带来突破性的变化。世界各地的电力公司也陆续开展了电力数据应用实践。例如美国SGD&E为客户提供一个可选的“空调负荷循环项目”,通过这个项目顾客可以让电力公司在用电高峰期替他们管理空调。美国加州大学洛杉矶分校的研究者根据大数据理论,将人口调查信息、电力企业提供的用户实时用电信息和地理、气象等信息全部整合,设计了一款“电力地图”。国内各界也已积极投入电力大数据的应用研究。
2智能配用电大数据总体框架
配用电大数据应用系统总体架构分数据资源、数据处理、公共服务、业务应用4个层次,见图1。数据资源层为数据处理提供数据源输入,数据处理层为公共服务层提供数据及计算服务功能,公共服务层为业务应用层提供业务应用的交互操作。
图1 智能配用电大数据应用总体架构图
数据资源层主要实现从历史、实时数据中心或相关业务系统获取电网内外部数据,如配电自动化系统、用电信息采集系统等内部数据,气象信息等外部数据。
数据处理层采用混合型的大数据存储和处理架构实现对多源异构配用电大数据的多样性存储和处理功能。混合存储可适应分布式文件系统、列式数据库、内存数据库等多种数据存储和管理形式,以满足不同应用的需求;处理架构分别面向离线分析、实时计算、计算密集型数据分析等场景采用分布式批处理、内存计算、高性能计算等技术实现。
公共服务层实现应用系统的基础功能,如数据模型管理、业务流程控制、服务总线、业务权限管理等功能。在公共服务层和数据处理层之间采用支持高并发、低延时事务操作的分布式内存数据缓存技术,降低业务应用操作与数据处理层之间的耦合性,提高应用服务响应效率。
业务应用层构建节电、用电预测、网架优化、错峰调度4项业务,实现配用电大数据应用系统的典型业务功能。采用模块化软件设计方法实现4个模块功能的即插即用,并在充分考虑模块之间的信息联络及功能联合的基础上,遵循规范的接口,实现模块之间的功能融合,从而实现4个业务模块之间既可独立运行,又可协作互补。