智能电网大数据结构复杂、种类繁多,除传统的结构化数据外,还包含大量的半结构化、非结构化数据,如客户服务中心信息系统的语音数据,设备在线监测系统中的视频数据与图像数据等。这些数据的采样频率与生命周期也各不同,从微秒级、分钟级、小时级,一直到年度级,见图2。
图2 智能电网数据采用频率和生命周期
1.2大数据业务需求分析
智能电网大数据业务应用根据对象不同可分为面向电力公司运行管理、面向电力用户服务、面向政府部门辅助决策等3类。面向电力公司运行管理类应用包括电力系统稳定性分析与控制、输变电设备故障诊断与状态检修、配电网运行状态评估与预警、配电网故障定位、负荷预测、城市电网规划等;面向电力用户服务类应用包括用户用电行为分析、需求侧管理、能效分析、供电服务舆情分析等;面向政府部门辅助决策类应用包括社会经济状况分析与预测、政府决策支持与相关政策评估,如电价政策、新能源补贴政策等是否合理等。这些需求需要综合电网运行状态信息、用户用电信息、客服系统信息、气象数据、经济社会数据和互联网数据等。
2智能电网大数据关键技术
根据信息处理流程,大数据在智能电网中的应用可以分为数据采集、数据清理、数据存储及处理、数据分析、数据解读和数据应用6个环节,其关键技术包括数据集成技术、数据存储技术、数据处理技术和数据分析技术。
2.1数据集成技术
智能电网大数据具有分散性、多样性和复杂性等特征,这些特征给大数据处理带来极大的挑战。要想处理智能电网大数据,首先就需要对众多数据源的数据进行集成,通过数据抽取、转换、剔除、修正等处理,建立正确、完整、一致、完备、有效的智能电网大数据。目前通常采用的数据集成模型包括数据联邦、基于中间件模型和数据仓库等。
ETL是企业数据集成的主要解决方案。ETL指Extract、Transform、Load,即抽取、转换、加载。数据抽取是从源数据源系统抽取目的数据源系统需要的数据;数据转换是将从源数据源获取的数据按照业务需求,转换成目的数据源要求的形式,并对错误、不一致的数据进行清洗和加工;数据加载是将转换后的数据加载到目的数据源。ETL过程中的主要环节就是数据抽取、数据转换和加工、数据加载。为了实现这些功能,各个ETL工具一般会进行一些功能上的扩充,例如工作流、调度引擎、规则引擎、脚本支持、统计信息等。
数据集成是智能电网大数据应用的关键环节。智能电网大数据集成涉及众多各类型的应用系统,这些系统类型和特征复杂,在实时性要求、数据规模、数据类型等方面存在较大的差异,在智能电网大数据集成中需要综合考虑各种因素,在集成技术上单一技术可能很难实现,需要结合多种技术来实现智能电网大数据的集成。