有一种交流电源系统理论使用复平面中的相量来代表电压和电流,该理论与一种以类似格式提供频谱成分的DFT变化形式相一致。从根本上说,在目标频率直接实现DFT公式也能达到同样的效果。但是,为使测量具有实时性,我们采用了一种从DFT公式获得求和元素的递归方法。实施方式有多种(取决于可用的DSP资源),但必须牢牢控制一个重要方面,这就是最大程度地降低频谱泄漏和噪声引起的误差。
某一相的采样电压和电流与基波频率值一起通过一个计算模块,该计算模块以相量形式提供计算结果。针对每个基波频率和某些用户可选的谐波频率,都会提供一对相量(电压和电流)。有了这些分量之后,我们就可以运用电源理论中的已知方法来提取RMS值和功率。RMS值相当于这些相量的幅度,视在功率则等于这些幅度的乘积。将电流相量直接投影到电压上并将二者相乘,就可以获得有功功率。分解电流的另一个正交元素与电压相乘就得到无功功率。
说到这里,我们要讨论一下采用实时方法的可能优点(动机)。例如,这种架构能够很好地监控变压器中的浪涌电流。这种电流发生在变压器通电期间,由磁芯的部分周期饱和引起。初始幅度为额定负载电流的2到5倍(然后慢慢降低),并具有极高的二次谐波,四次和五次谐波也会携带有用的信息。如果只看总RMS电流,浪涌电流可能会被误认为短路电流,因而可能错误地让变压器退出服务。为了识别这种情形,必须获得二次谐波幅度的精确实时值。当我们只需要几个谐波的信息时,运用完整的FFT变换可能不是非常有效。
这种有选择地计算几个谐波成分的方法可能比FFT方法更有效率,所谓三次谐波序列就是另一个很好的例子。有时需要特别注意三次谐波的奇数倍谐波(3、9、15、21...)。在接地Y型系统中,当电流在零线上流动时,这些谐波就会成为一个重要问题。它会引起两个典型问题:零线过载和电话干扰。有时候,零线的三次谐波序列压降导致线路到零线电压严重失真,致使某些设备发生故障。本文提出的解决方案可以只监控零线电流以及所有相位电流之和上的这些谐波。
顶层DSP架构
上述DSP模块已添加到一个根据基本公式计算总RMS值和功率的现有架构。我们还加入了一个用于计算多个电源品质因数的元件。首先,我们计算谐波失真(HD),以便根据基波RMS值归一化所有谐波RMS值。然后,利用总RMS值和基波RMS值,我们根据标准定义计算总谐波失真加噪声(THD+N)。最后,根据有功功率与视在功率的比值,提取所有功率因数。