智能大数据时代下的交通如何变革
东方之星客轮在长江湖北监利段倾覆之前,最后形成的航迹监测线路和状态信息来自一个叫作宝船网的平台。通过宝船网,东方之星从起航到出事地点都被全程观测,直到最后的9点31分21秒。
智能交通发展至今,各地采集的数据浩如烟海,这些数据存在巨大的潜力和价值,亟待处理和挖掘。而随着大数据时代的到来,智能交通也许真的可以智能起来。
不过,大数据虽然支撑着智能交通的前行,但其发展道路上难免要历经磨难。
给城市交通一个希望
大数据、云计算的发展对交通运输行业不仅是挑战,更是对传统模式的突破。现在涌现出了滴滴打车、快的以及易到用车,引起一些恐慌,但或许这种恐慌会倒逼一些不合理现象的改变。同济大学副校长杨东援告诉记者。
比如通过滴滴打车平台可以看到全国各个城市每天的交通情况,包括车辆行驶情况、路网情况以及打车需求情况等。
我们运转时可以很清晰地看出北京24小时内的车辆分布情况。通常人们认为北京每天早上6点到8点间的高峰路段是三环、四环,但是滴滴、快的打车技术副总裁朱军介绍,数据显示机场高速才是高峰路段;下午1点,对出租车司机来说什么地方生意最好?统计显示是金融街,这里每天有很多人在这一时段赶往机场。这些收益都依托于大数据平台。
滴滴打车利用大数据平台更好地分配并合理利用了已有资源,也只能解决部分问题。只有掌握全局,才能控制全局。
大数据的出现,终于给城市一个希望。杨东援表示,大数据可以连续观测城市交通每天发生的变化,然后再利用这些数据分析交通的问题所在。
城市交通不像西医,出现具体问题就对症下药。杨东援打了个比方,而是更像中医,须搭脉问诊,刨根问底,才能找到出现症状的缘由。
杨东援坦言,面对城市堵病,政府必须学会搭脉,否则将无法开出调理和根治的药方。
过去,治理交通主要依靠调查手段。例如,上海市5年一次的交通大调查,不仅需要高达八千万元的费用,还需要花费半年多的时间处理数据,调查结果很难跟上城市变化的节奏。
智能交通问题很复杂。杨东援告诉记者,大数据对于城市交通来说,不仅是变革和机遇,更是富有挑战性的舞台。
深圳这几年就做了件不简单的事。它的智能交通建设是打造了海陆空一体化的综合交通体系,也许深圳的案例更值得借鉴。