第一个也是最明显的变化就是智能电网,它有大量的节点,覆盖广阔的地理范围,无法通过将现有的私有网络桥接起来进行管理。它需要使用互联网,而不仅仅是互联网骨干网。为能够延伸到独立的电厂、居民街区的电路断路器、屋顶太阳能板控制器、智能电表以及家庭中的电动车辆充电设备,智能电网的控制网络需要采用无线和固网,以及公网和私网进行连接。
这种变化对电网安全产生了深刻的影响。据报道,已经有人通过互联网来连续探测并攻击控制网络。而智能电网采用了公共基础设施,这些攻击会发现新目标。
业界曾尝试预测IEC 62351会遇到什么样的挑战,这一标准提供了认证和防入侵探测,保护不受非法监听和欺骗的影响。但是,网络虽然很好,但在这些方面也只是采取了临时应急措施。早在2010年,Anthony Metke和Randy Ekl以及后来的摩托罗拉,讨论认为只有完全公开密钥的加密方法能够有效的保护电网的安全。其他专家提醒说,即使是这一方法,在其他应用中也是脆弱的,只有通过连续监测、主动防御,甚至是攻击将要发起的攻击,才能实现智能电网的安全。对于网络适配器设计人员,一直对威胁进行防御并不可行,因此,对于不断扩大的城市,其物理安全取决于功能电网。
更高级的控制
由于有更多的节点和公共网络,智能电网的新一类节点越来越复杂。对于传统的大规模和中等规模发电厂,电网现在增加了很多小规模太阳能设施,未来还有储能设施。随着电动车辆的逐步发展,新一类非典型用电行为——新的存储介质,开始连接到电网中。增加的这些东西改变了电力从电厂向用户单向流动的老方式,会对本地分支阻抗产生极大的影响。由于智能电网的一个主要目标是维持动态稳定性——特别是响应意外的瞬时变化,因此,阻抗和电流方向的突然变化是很大的问题。
对此,电力公司扩展了他们的传感器功能。一个例子是更多的使用了相位测量单元(PMU, 图4)。这些设备实际上是波形慢变的数字转换器,一般是30个采样/秒。PMU使用GPS时间参考对采样打上时间戳,因此,在原理上,控制中心能够通过网络同时了解电压、相位和波形,支持控制中心精确的调整效率和电力质量。
图4.现代PMU是低速波形数字转换器,具有GPS时间参考和冗余网络连接。
但是,这一功能要求对其他节点的事件打上时间戳——继电器、太阳能板控制器、车辆充电器、断路器等。如此广泛的时间协议意味着不仅需要数百万个GPS接收机,而且还要在公网上支持IEEE 1588。