另外,市电供电异常时,系统将无电源输入,从而影响程序正常工作,丢失数据,严重影响系统的正常运行。因此,本设计对电源模块采取冗余措施,使用稳压电源加电池供电的双电源供电方案。在断电时,智能终端将自动切换到电池供电方式,保证系统的正常运行。
对于冗余方案,本设计拟采用TI公司的TPS2421,该芯片采用大功率的MOSFET管来阻断不同电源和负载直接的连接,MOSFET的导通内阻可以到几mΩ,能大大降低压降损耗,无需散热器,可节省电路板面积。双路电源以并联方式接入,正常情况下可同时对负载进行供电,当断电引起稳压电源掉电时,系统自动切换到电池供电模式,而由于MOSFET的反相高阻特性,稳压电源不会受到反向冲击电压的影响。当市电恢复供电后,系统再次进入双电源供电模式,从而实现了电源的不间断供电。冗余电源设计原理图见图2.14。
图2.14 冗余电源设计原理图
3 智能插座
随着智能电网的发展,电表成为家庭用电的智能终端已是大势所趋。插座作为用电设备控制的最基本单元,将会起到越来越重要的作用,因此本设计中的智能插座,嵌入了单片机,实现电能测量和数据通讯,智能控制等功能。
3.1 硬件设计
通过电压采集,电流采集和温度采集对用电设备的工作电压、工作电流以及插座内部环境温度进行监测,并在LCD上实时显示,以便实时读取信息。此外,设计中嵌入了Zigbee模块,能与智能显示终端实时通讯,将用电异常信息和控制执行结果反馈给智能显示终端,实现数据的双向传输。