分布式控制策略;
分布式控制应用技术。
实施分布式控制很容易,关键是要知道拓扑结构。所以关键技术应该包括终端能够自动识别与应用相适应的拓扑结构。将来终端利用IEC61850通信之后,可以自动建立拓扑结构,而不是完全依靠主站下发。
馈线拓扑结构自动识别是一个非常关键的技术,它可以为每一个终端配置相邻终端的信息(名称与通信地址),发起控制应用的主控终端通过接力查询获取所需的馈线拓扑信息。
此外,控制信息快速实时传输技术也非常关键。在变电站里常规的GOOSE over MAC传输机制实现起来较复杂。配电网中,控制信息与普通测量信息在IP网络中混合传输,需要采取特殊技术保证控制信息的快速实时传输。
配电网控制应用响应速度要求一般不大于100ms,控制信息传输延时小于10ms。 采用GOOSE over UDP传输机制,传输延时小于5ms,可以满足在配电网中应用的要求。
下一步,应该对基于分布式控制保护、电压控制做一些研究,这方面内容比较缺乏。
构建广域测控系统(WAMCS)
未来需要构建广域测控系统(WAMCS),为配电网监测与保护控制应用提供统一支撑平台。该平台的结构与常规配网自动化系统类似,包括主站、通信与智能终端(STU), 兼容传统控制模式,支持基于对等通信的分布式控制,支持设备与应用软件的即插即用。
广域测控系统与常规配电自动化系统在硬件上是一样的,区别是在广域测控系统终端本身支持高级应用,有开放式的程序接口,当然数据模型必须基于61850,必须具备自动识别拓扑的能力,可以在程序接口上编程序。
在未来配电网中,每一个终端就是一个小主站,每一个终端就可以作为一个控制的主体来完成控制任务,这是未来发展方向。
举一个例子作说明,远方跳闸式反孤岛保护。目前孤岛保护办法就是检测就地的电压和电流,就地控制有一个问题,存在死区。如果负荷和发电量接近的话,频率和电压不会达到我们所要求的门槛值,就不会跳闸。但是采取就地控制方法,采集的信息有限,控制性能也存在问题。
相关新闻: