5电气二次部分
站内采用综合自动化系统,采用分层分布式的系统结构。鉴于全地下变电站土建施工费用较高,应尽量减少地下空间,在满足运行规程的要求下,应尽量缩减主控制室面积,节省电缆长度。具体内容如下:110kV GIS 采用独立的单元测控装置对各间隔内的断路器、隔离开关、接地隔离开关进行监测和控制,单元测控装置按间隔配置,安装于GIS 室测控单元柜。10kV 采用集保护与测控功能于一体的微机保护装置,分散安装于10kV 开关柜内。10kV 受电断路器、主变中性点接地隔离开关、主变有载调压分接头位置调整采用独立的单元测控装置对被控设备进行监测和控制,单元测控装置在主控室集中组屏。主变保护、110kV 线路保护及10kV 备自投等在主控室集中组屏。保护动作信息,通过以太网与综合自动化系统连接。为实现对所用电系统、消防系统、通风系统、逆变电源系统、10kV 母线电压的监测,配置综合测控装置,该装置在主控室集中组屏。综合自动化系统不设独立的接地网,直接与变电所的地网相联。
全地下变电站虽然在地下,但其在运行时变压器、电抗器、轴流风机的噪声仍然会对周围居民产生影响。在设计过程中应采取以下措施降噪:选择比常规设备噪声要低的GIT及GIS 设备,作为主要噪声源的设备应布置在利于隔声且设计有吸声结构的室内。主变压器、电抗器的基础应独立着地( 不与其它建筑结构连接),以降低固体噪声的传播。
在设计过程中注意采取以下措施减少电磁辐射,如选用带金属屏蔽外壳的铁芯电抗器等电磁辐射较小的设备将电磁辐射高的高压设备布置在背向人流密集区的位置增设屏蔽措施等。
6结语
本文以110kV 全地下变电站电气部分的设计结合工程实际进行了一些介绍,但全地下变电站的设计及建造是一项极其复杂的系统工程,尤其在靠近河流地区,在建设过程中走过的弯路和总结的经验教训都是我们在设计时可以利用的宝贵资源,为电力系统中得到更加广泛的应用。