试想攻击者可能如何看待当前的三个主要环节。成功入侵电力公司控制室能够最大程度地控制电网,但所承受的风险也最高。控制室必定防护严密,具有良好的访问权限控制,同时还具有安全认证流程。此外,入侵者在控制室也很难藏身——即使保安人员没有抓住闯入者,监控摄像头也会记录下来。当然,内部人员能够最有效地从电力控制中心攻击整个电网,但由于电力部门规程严格限制了个人权限,任何个人都不可能运行威胁电网运转的操作,此类操作通常需要多人同时到场实施,从而简单了内部人员作案的风险。
这样,攻击者的第二个选择必然是通信链路,迄今为止,关于智能电网安全性的多数话题都集中在通信链路,大多数系统部署也都采用了严格的加密技术,以保护智能电网端点与电力中心之间数据和命令传输。为了成功攻击通信通道,必须获取安全密匙或认证密匙。而可靠的通信协议都不会共用密匙,意味着攻击者只能(1) 从电力公司或端点获取密匙;或者(2)对通道的加密/认证机制实施暴力攻击。注意,选项1实际上并非攻击通道本身,而是攻击电网的其它部件。暴力攻击(选项2)也不大可能得到结果。常见的加密算法,例如AES-128,以暴力方式攻击,计算方面是不可行的,这意味着超高速计算机需要运行若干年,甚至几十年的时间才能获取密钥,远远长于数据本身有效期限。
于是攻击者将转向智能电网端点本身:诸如智能电表或电网健康状况监测传感器等装置。此类装置的吸引力更大,因为端点保护措施相对薄弱,大范围分散在室外,或者安装在远距离传输线上。我们可将诸如数据集中器之类的装置考虑在内,因为此类设备往往也没有保护措施。这些薄弱点为攻击者分析和尝试不同的攻击方法提供了可乘之机。的确,这些端点带电,难以触及(例如在高耸的传输线上),具有潜在危险。但攻击者完全可以利用一些防护措施,避免人员伤害。表面上看,像电表这样的端点最容易使攻击者得逞。但对手如何实施攻击呢?
攻击已安装的电表
以下讨论适用于智能电网上具有通信功能的任何端点,但为讨论方便,我们以智能电表为例。
对于个体攻击,攻击者将穷其所能对电表实施攻击。其目的可能是更改电流检测装置,使其检测耗电量更少;或者对电表软件实施逆向工程,使其报告的耗电数更少。
社会攻击可能以类似方式入手:攻击者研究电表,试图了解其工作原理。其目的是希望析取密匙、对软件协议实施逆向工程,以及重新设置电表。一旦得手,攻击者可对大量电表重新配置,降低其实报耗电量,或在指定日期和时间同时断开。
面对此类威胁,如何保障智能电网端点的安全呢?市场上可供使用的嵌入式安全技术(例如,广泛用于金融交易和政府机构的安全处理器),能够很好地抵御个体电表的攻击。这类安全技术集成了物理攻击(强行控制)侦测或嵌入式系统、逻辑攻击(分析嵌入式系统存储器、应用程序或协议)侦测的方法。