2.电表的双向互动。作为电力系统的一个终端设备的电表,现阶段还只能实现单方面交流,也就是只具备自动读取的功能,而无法实现双方互动的交流,而智能电表的应用则可以改善这一现状,实现用户和电力系统之间的互动。比如,电力供应机构可以精确地把我用户的用电规律,在用电高峰期或求大于供时,适当地提高电价,此时,用户就可以转而使用其他替代能源设备,或者把一些用需要耗电的工作换到用电低谷的时间段来做,因为用电低谷的电价可能会便宜很多。要实现智能电表的普及,就必须要充分结合电力线载波系统、MCU、计量芯片、存储芯片等的功能。
3.核心芯片的性能。利用电力载波进行集中抄表是智能电表应用中最基础的功能,其核心芯片的性能也是决定电力载波系统成败的关键。系统厂商如果要保证信号的传输距离,就要尽最大可能提高发射功率,然而一般来说,发射功率过大就会对电网产生强烈的电磁干扰,也就是常说的“二次污染”。要减少这类污染,就要尽可能用最小发射功率实现最佳传输效果,这就需要从核心芯片入手来解决这个问题,而不只是着眼于系统的外围。
4.通信保障能力和网络传输协议。在实施电力载波集中抄表方案过程中,需要解决任意相邻节点物理层通信保障能力的问题和具有帧中继控制的网络传输协议的问题,采用高集成度的SoC解决方案则是有效的途径之一,此外,利用芯片内部的嵌入式微处理器来进行网络传输与信息安全控制也可以大幅度增强电力载波芯片的性能。
市场方面:智能电表招标的数量有限,参与竞标的企业数量却众多,为获得市场份额,厂商在竞标中不得不打价格战,中标的产品价格处于低位,企业的利润空间很小。除了在技术壁垒较高的三相智能电表领域中标企业较为集中以外,二项、单项电表的中标企业数量都为数较多,市场份额较为分散,企业要想通过规模效应取得更多的利润很困难。