大数据平台靠什么技术手段
要实现电网大数据价值体现,首先要对电网生产运营过程中不断产生的海量数据进行快速处理并进行有效的存储。以往数据量不大时,进行数据处理主要由一两台计算机完成,在海量数据面前,典型的做法需要考虑采用更多台计算机共同处理这些数据,即分布式处理技术。目前,南瑞集团已基于分布式处理技术完成相关大数据平台研发,并在用电信息采集系统中进行了应用,数据采集效率较原有技术方式大幅提升。
基于采集处理好的数据,要做的第二件事就是从海量的数据中挖掘出对企业运营管理、生产运行有价值的信息。以客户欠费预测为例,首先从数据库提取2010~2012年全体客户交费数据,通过分析不同客户的交电费的行为以及客户基本属性特征,设计出用户欠费预测模型,并采用此模型预测2013年客户欠费风险,然后将预测结果与2013年实际欠费情况进行对比,如发现预测准确率较高可信,则可基于此模型预测未来年度中可能存在欠费风险的客户,并对不同风险等级客户提前采取差异化的电费回收策略和预防措施,保障企业的电费收入,有效控制企业经营风险。以上便是一个数据挖掘的典型案例,采用的技术为数据挖掘中分类预测方法,其他主要方法还包括了关联分析、聚类分析、时序分析、最优决策、异常分析、特异群组分析和演变分析等。
数据最终的价值体现就是让人更容易更好的使用并辅助工作开展,因此就需要采用丰富的图形化展示、交互式体验等手段,清晰有效地传达与沟通信息,便于相关使用人员对有关数据进行理解和认识。如通过曲线图来展现近几年公司售电量的趋势,通过饼图来表示公司人员的岗位分布情况,通过地图下钻功能从省公司指标穿透查看地市公司指标,都是可视化的一些典型做法。