3.2、采样滤波:
整个硬件设计的关键部分就是信号采集,信号采集是将220V工频交流电转换成相对应的0到3V的交流信号。这是关系到整个系统精度的问题,如果采集失真,不仅导致精度下降,还有可能产生严重的错误。
此技术选用的是利用专用变压器件互感器直接进行变压,得到所需的交流信号后,经过滤波电路,直接输出给MCU的A/D接口进行采样。
电流通过专用变压器,将电压转换成0.5V的电压Ui;在通过一阶低通滤波R1、C1,低通滤波主要是为了滤掉高频的信号,电容是可以通过高频信号,而阻碍低频信号通过,将电容C1接地,便可滤掉高频信号;由于滤波后得到的信号比较弱,所以还要再加入一个通过电阻R2的Ur,Ur是0-3V的直流信号,最后将得到一个0-3V的交流信号U0。
3.3、智能电表硬件设计方法:
智能电表主要是由电子元器件构成,其工作原理是:首先通过对用户供电电压和电流的实时采样,利用集成电路,对采样电压和电流信号进行变压,通过滤波得到0-3V的模拟信号,再通过A/D转换器采样、保持、量化及编码四个过程后转换得到数字信号,在数字信号处理单元中通过公式进行计算,得出每秒的电量,进行累加,最后将所得到的电量值通过控制单元进行处理、控制,把电量值进行储存或输出。
采用一个支持实时仿真和嵌入式跟踪的16/32位ARM7TDMI的CPU,并带有嵌入的高速Flash存储器,存储器接口和独特的加速结构使32位代码能够在最大时钟频率下运行。
为对代码规模有严格控制的应用可使用16位Thumb模式将代码规模降低超过30%,而性能的损失却很小。A/D转换器需要满足对三相工频交流电进行不失真的采样。多个串行接口可方便地进行接口扩展。
外设接口可以外接一个掌抄器,用于工作人员调试和维修等等。数据存储、输出和显示都需要数据的不同结构,所以还需要对电量数据的结构转换,转换为相应的存储结构、输出结构和显示结构,这些都是在MCU的数据转换模块中进行。