低温系统
低温系统维持超导磁体处于超导态所必须的低温环境。超导磁体的冷却方式一般为浸泡式,即将超导磁体直接至于低温液体中。对于低温超导磁体,低温多采用液氦(4.2K)。对于大型超导磁体,为提高冷却能力和效率,可采用超流氦冷却,低温系统也需要采用闭合循环,设置制冷剂回收所蒸发的低温液体。基于Bi系的高温超导磁体冷却只20~30K一下可以实现3~5T的磁场强度,基于Y系的高温超导磁体即使在77K也能实现一定的磁场强度。随着技术的进步,采用大功率制冷机直接冷却超导磁体可成为一种现实的方案,但目前的技术水平,还难以实现大型超导磁体的冷却。
功率调节系统
功率调节系统控制超导磁体和电网之间的能量转换,是储能元件与系统之间进行功率交换的桥梁。目前,功率调节系统一般采用基于全控型开关器件的PWM变流器,他能够在四象限快速、独立的控制有功和无功功率,具有谐波含量低、动态响应速度快等特点。
监控系统
监控系统由信号采集、控制器两部分构成,其主要任务是从系统提取信息,根据系统需要控制SMES的功率输出。信号采集部分检测电力系及SMES的各种技术参量,并提供基本电气数据给控制器进行电力系统状态分析。控制器根据电力系统的状态计算功率需求,然后通过变流器调节磁体两端的电压,对磁体进行充、放电。控制器的性能必须和系统的动态过程匹配才能有效的达到控制目的。SMES的控制分为内环控制和外环控制。外环控制器做为主控制器用于提供内环控制器所需要的有功和无功功率参考值,是由SMES本身特性和系统要求决定的;内环控制器则是根据外环控制器童工的参考值产生变流器开关的触发信号。
SMES在电力系统中的应用途径
提高电力系统的稳定性。
SMES作为一个可灵活调控的有功功率源,可以主动参与系统的动态行为,既能调节系统阻尼力矩又能调节同步力矩,因而对解决系统滑行失步和振荡失步均有作用,并能在扰动消除后缩短暂态过渡过程,使系统迅速恢复稳态。